Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s...Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
This study explores the key physicochemical factors affecting the hydrophilic characteristics of iron mine blasting dust(BD). The BD is separated into an unwetted part(UWBD, hydrophobic part) and a wetted part(WBD, hy...This study explores the key physicochemical factors affecting the hydrophilic characteristics of iron mine blasting dust(BD). The BD is separated into an unwetted part(UWBD, hydrophobic part) and a wetted part(WBD, hydrophilic part). Its particle size, true density(TD), pore parameters, mineral composition, and surface compounds are comprehensively characterized and compared. The results indicate that a smaller particle size and more developed pore parameters are two key factors responsible for the strong hydrophobicity of the BD. The mineral composition of the BD has no direct effect on its wetting properties;however, it indirectly influences the deposition characteristics of the BD in water by affecting its TD. Unlike coal dust, the surface organic composition of the BD does not affect its wettability and the peak area of C–C/C–H hydrophobic groups in the C 1s X-ray photoelectron spectrum of the UWBD(45.03%) is smaller than that in the C 1s spectrum of the WBD(68.30%). Thus, eleven co-influencing processes of physicochemical properties of the BD on its wettability are summarized. This research sheds light on the key factors affecting the wettability of the BD.展开更多
The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffrac...The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that the HBD particles can be classified into three types based on their particle size(PS):larger particles(PS>10μm),medium particles(1μm≤PS≤10μm),and nanoparticles(PS<1μm).The cumulative volume of respirable dust(PS≤10μm)was 84.45%.In addition,three shapes of HBD were observed by SEM:prism,flake,and bulk.In particular,the small particles were mostly flaky,with a greater possibility of being inhaled.Furthermore,the body and surface chemical compounds of HBD were determined by XRD and XPS,respectively.Ammonium adipate(C6H16N2O4)was the only organic compound in the body of HBD,but its mass fraction was only 13.4%.However,the content of organic C on the surface of HBD was 85.35%.This study demonstrated that the small-particle size and large amount of organic matter on the surface of HBD are the main reasons for its hydrophobicity,which can provide important guidance for controlling respirable dust in iron mines.展开更多
Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and ...Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.展开更多
Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the...Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the bauxite mining area, it is necessary to carry out blasting work before mining. This article mainly analyzes and optimizes the blasting practice of the Sangaredi open pit bauxite mine. The subject was finally extended to the reduction of nuisances due to blasting, that is to say essentially due to vibrations: this presupposed a study around the vibration data available, and the proposal of methods to limit these vibrations. The bottom conditions of the Sangaredi bauxite ore zone are studied. Bauxite reserves are very rich and the market is huge. The analysis of mine blasting practices, mainly the types of explosives, the selection and analysis of explosives and blasting equipment and choosing the mode of longitudinal blasting, the link of the blasting site of the mining area, further study the optimization of mining blasting practice, the choice of drilling and process to determine reasonable blasting parameters, which improving the drilling method. The experimental results show that this optimization scheme improves efficiency blasting of the bauxite mine but also promotes an increase in production.展开更多
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yi...The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yield, "pushing-wall" accident rate, and brow damage rate were not effectively controlled in practical blasting. The model test of a similar material shows that the charge concentration of bottom blastholes in the sector is too high; the pushing wall is the fundamental reason for the poor blasting effect. One of the main methods to adjust the explosive distribution is to increase the length of charged blastholes. Therefore, the field tests with respect to increasing the length of uncharged blastholes were made in 12# stope of-95 subsection and 6# stope of Beiminghe iron mine. This paper took the test result of 12# stope as an example to analyze the impact of charge structure on blasting effect and design an appropriate blasting parameter that is to similar to No. 12 stope.展开更多
A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The t...A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The tunnels were developed parallel to one another and perpendicular to a high subhorizontal stress.High resolution seismic monitoring was used to record and compare the seismic response generated by each excavation.Analysis of the seismic data from the conventionally blasted tunnel indicated that the seismogenic zone of stress-driven instability extended up to 3.6 m ahead of the face.Destress blasting within the corresponding zone of the adjacent tunnel had the effect of reducing the rock mass stiffness,primarily due to weakening of the pre-existing natural discontinuities.The reduction in rock mass stiffness was inferred from the spatial broadening of the seismogenic zone and associated reduction in the measured spatial density of events,radiated energy and seismic potency ahead of the face.High strain gradients around the unsupported portion of the conventionally blasted excavation were implied by the rate at which the spatial density of seismicity changed with respect to the tunnel face position.In contrast,the change in the spatial density of seismicity around the destressed development face was much more gradual.This was indicative of lower strain gradients in the rock there.A reduction in rock mass stiffness following destress blasting was also indicated by the much wider variety of seismic source mechanisms recorded adjacent to the destressed tunnel.Seismic source mechanisms associated with destress blasting were also more clearly characteristic of compressive overstressing with fracture closure.The source mechanism data also indicated that destress blasting induced instability on all natural joint sets.When compared to conventional development blasting,destress blasting typically reduced violent strain energy release from the rock mass and the associated seismicity,but not always.展开更多
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal...Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of dis...The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.展开更多
Surface mines continue to implement highwalls for several reasons, such as increasing recovery, improving margins, and justifying higher stripping ratios. Highwall stability is a complex issue that is dependent upon a...Surface mines continue to implement highwalls for several reasons, such as increasing recovery, improving margins, and justifying higher stripping ratios. Highwall stability is a complex issue that is dependent upon a variety of mining and geologic factors, and a safe design is necessary for a successful surface operation. To improve highwall stability, it is important to understand the connection between local geology and blasting. Explosives are employed throughout the mining industry for primary rock breakage. There are a number of controlled blasting techniques that can be implemented to improve highwall stability.These include line drilling, smooth wall blasting, trim blasting, buffer blasting, air decking, and presplitting. Each of these techniques have associated advantages and disadvantages. Understanding local geology is necessary for selecting the appropriate controlled blasting technique. Furthermore, understanding the limitations and conditions for successful implementation of each technique is necessary. A discussion of the impact of geologic conditions on highwall stability is provided. Additionally, discussion is provided for the successful incorporation of the controlled blasting techniques listed above, and the associated mining and geologic factors that influence the selection and design of controlled blasting plans.Finally, a new methodology is proposed.展开更多
For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are rel...For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.展开更多
No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movem...No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.展开更多
One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling ...One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system(ANFIS)and radial basis function(RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size(K_(80))of Golgohar iron mine of Sirjan.Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.展开更多
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. ...Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively.展开更多
Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ obse...Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.展开更多
Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantificatio...Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantification of blasting dust emission is required. This can be done by developing emission factors for blasting. The concept is similar to that of specific charge in blasting. For mining operations other than blasting, quantification of dust can be done using emis- sion factors. Emission estimation techniques are very limited for blasting. In this study, the emission factors were de- veloped by carrying out a detailed field study at one of the largest opencast coal mines of India in all four seasons. Da- ta on atmospheric and meteorological conditions were generated by installing sodar and automatic weather station at the mine site. Respirable dust samplers were installed for monitoring of the dust emitted during coal or overburden bench blasting. Emission factors for dust concentrations were developed in gram per cubic meter of rock excavated. The developed emission factors were used to estimate dust emissions for adjacent mines due to similarity in mining and meteorological conditions. Seasonal variations in moisture contents in benches, where dust was monitored, indicated the lowest emission factors in monsoon due to high moisture in the bench materials. Similar field studies were also conducted at another coalfield of India for two seasons. It was found that the emission factors are site-specific.展开更多
文摘Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFC0805204)the National Natural Science Foundation of China (Nos. 51874015 and 51504017)
文摘This study explores the key physicochemical factors affecting the hydrophilic characteristics of iron mine blasting dust(BD). The BD is separated into an unwetted part(UWBD, hydrophobic part) and a wetted part(WBD, hydrophilic part). Its particle size, true density(TD), pore parameters, mineral composition, and surface compounds are comprehensively characterized and compared. The results indicate that a smaller particle size and more developed pore parameters are two key factors responsible for the strong hydrophobicity of the BD. The mineral composition of the BD has no direct effect on its wetting properties;however, it indirectly influences the deposition characteristics of the BD in water by affecting its TD. Unlike coal dust, the surface organic composition of the BD does not affect its wettability and the peak area of C–C/C–H hydrophobic groups in the C 1s X-ray photoelectron spectrum of the UWBD(45.03%) is smaller than that in the C 1s spectrum of the WBD(68.30%). Thus, eleven co-influencing processes of physicochemical properties of the BD on its wettability are summarized. This research sheds light on the key factors affecting the wettability of the BD.
基金financially supported by the National Key Research and Development Program of China(No.SQ2017YFSF060069)the National Natural Science Foundation of China(No.51574017)
文摘The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that the HBD particles can be classified into three types based on their particle size(PS):larger particles(PS>10μm),medium particles(1μm≤PS≤10μm),and nanoparticles(PS<1μm).The cumulative volume of respirable dust(PS≤10μm)was 84.45%.In addition,three shapes of HBD were observed by SEM:prism,flake,and bulk.In particular,the small particles were mostly flaky,with a greater possibility of being inhaled.Furthermore,the body and surface chemical compounds of HBD were determined by XRD and XPS,respectively.Ammonium adipate(C6H16N2O4)was the only organic compound in the body of HBD,but its mass fraction was only 13.4%.However,the content of organic C on the surface of HBD was 85.35%.This study demonstrated that the small-particle size and large amount of organic matter on the surface of HBD are the main reasons for its hydrophobicity,which can provide important guidance for controlling respirable dust in iron mines.
文摘Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.
文摘Generally, the Mos hardness of bauxite is 2.5 to 3.5. According to the specific conditions of the Sangaredi bauxite deposit, that is, the rock hardness coefficient is between 3 and 6, and there is a clayey zone in the bauxite mining area, it is necessary to carry out blasting work before mining. This article mainly analyzes and optimizes the blasting practice of the Sangaredi open pit bauxite mine. The subject was finally extended to the reduction of nuisances due to blasting, that is to say essentially due to vibrations: this presupposed a study around the vibration data available, and the proposal of methods to limit these vibrations. The bottom conditions of the Sangaredi bauxite ore zone are studied. Bauxite reserves are very rich and the market is huge. The analysis of mine blasting practices, mainly the types of explosives, the selection and analysis of explosives and blasting equipment and choosing the mode of longitudinal blasting, the link of the blasting site of the mining area, further study the optimization of mining blasting practice, the choice of drilling and process to determine reasonable blasting parameters, which improving the drilling method. The experimental results show that this optimization scheme improves efficiency blasting of the bauxite mine but also promotes an increase in production.
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
文摘The large structure parameter of a sublevel caving method was used in Beiminghe iron mine. The ores were generally lower than the medium hardness and easy to be driUed and blasted. However, the questions of boulder yield, "pushing-wall" accident rate, and brow damage rate were not effectively controlled in practical blasting. The model test of a similar material shows that the charge concentration of bottom blastholes in the sector is too high; the pushing wall is the fundamental reason for the poor blasting effect. One of the main methods to adjust the explosive distribution is to increase the length of charged blastholes. Therefore, the field tests with respect to increasing the length of uncharged blastholes were made in 12# stope of-95 subsection and 6# stope of Beiminghe iron mine. This paper took the test result of 12# stope as an example to analyze the impact of charge structure on blasting effect and design an appropriate blasting parameter that is to similar to No. 12 stope.
基金the sponsors of the Mine Development at Great Depth research project for their financial and practical support of this research
文摘A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The tunnels were developed parallel to one another and perpendicular to a high subhorizontal stress.High resolution seismic monitoring was used to record and compare the seismic response generated by each excavation.Analysis of the seismic data from the conventionally blasted tunnel indicated that the seismogenic zone of stress-driven instability extended up to 3.6 m ahead of the face.Destress blasting within the corresponding zone of the adjacent tunnel had the effect of reducing the rock mass stiffness,primarily due to weakening of the pre-existing natural discontinuities.The reduction in rock mass stiffness was inferred from the spatial broadening of the seismogenic zone and associated reduction in the measured spatial density of events,radiated energy and seismic potency ahead of the face.High strain gradients around the unsupported portion of the conventionally blasted excavation were implied by the rate at which the spatial density of seismicity changed with respect to the tunnel face position.In contrast,the change in the spatial density of seismicity around the destressed development face was much more gradual.This was indicative of lower strain gradients in the rock there.A reduction in rock mass stiffness following destress blasting was also indicated by the much wider variety of seismic source mechanisms recorded adjacent to the destressed tunnel.Seismic source mechanisms associated with destress blasting were also more clearly characteristic of compressive overstressing with fracture closure.The source mechanism data also indicated that destress blasting induced instability on all natural joint sets.When compared to conventional development blasting,destress blasting typically reduced violent strain energy release from the rock mass and the associated seismicity,but not always.
文摘Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Fund for New Teacher of the Doctoral Program of Higher Education(No. 200805611092)the Fundamental Research Funds for the Central Universities(No.2009zm0064)the Key Program of the National Natural Science Foundation of China(No.50934002) for its financial support
文摘The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.
文摘Surface mines continue to implement highwalls for several reasons, such as increasing recovery, improving margins, and justifying higher stripping ratios. Highwall stability is a complex issue that is dependent upon a variety of mining and geologic factors, and a safe design is necessary for a successful surface operation. To improve highwall stability, it is important to understand the connection between local geology and blasting. Explosives are employed throughout the mining industry for primary rock breakage. There are a number of controlled blasting techniques that can be implemented to improve highwall stability.These include line drilling, smooth wall blasting, trim blasting, buffer blasting, air decking, and presplitting. Each of these techniques have associated advantages and disadvantages. Understanding local geology is necessary for selecting the appropriate controlled blasting technique. Furthermore, understanding the limitations and conditions for successful implementation of each technique is necessary. A discussion of the impact of geologic conditions on highwall stability is provided. Additionally, discussion is provided for the successful incorporation of the controlled blasting techniques listed above, and the associated mining and geologic factors that influence the selection and design of controlled blasting plans.Finally, a new methodology is proposed.
基金Supported by the Natural Science Foundation of China (50375026, 50375028)
文摘For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.
文摘No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.
基金financially supported by the Special Fund of Islamic Azad University,Malayer Branch(No.2293)
文摘One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system(ANFIS)and radial basis function(RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size(K_(80))of Golgohar iron mine of Sirjan.Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.
文摘Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively.
基金Supported by the National Natural Science Foundation of China(50704025)the National Science Fundation of Education Department in Shaanxi Province(07JK318)the Planning Project of Excellent Talented Person of New Century Supported by Ministry of Education of China (NECT050874)
文摘Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.
文摘Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantification of blasting dust emission is required. This can be done by developing emission factors for blasting. The concept is similar to that of specific charge in blasting. For mining operations other than blasting, quantification of dust can be done using emis- sion factors. Emission estimation techniques are very limited for blasting. In this study, the emission factors were de- veloped by carrying out a detailed field study at one of the largest opencast coal mines of India in all four seasons. Da- ta on atmospheric and meteorological conditions were generated by installing sodar and automatic weather station at the mine site. Respirable dust samplers were installed for monitoring of the dust emitted during coal or overburden bench blasting. Emission factors for dust concentrations were developed in gram per cubic meter of rock excavated. The developed emission factors were used to estimate dust emissions for adjacent mines due to similarity in mining and meteorological conditions. Seasonal variations in moisture contents in benches, where dust was monitored, indicated the lowest emission factors in monsoon due to high moisture in the bench materials. Similar field studies were also conducted at another coalfield of India for two seasons. It was found that the emission factors are site-specific.