To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con...To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.展开更多
Purpose: Formal concept analysis(FCA) and concept lattice theory(CLT) are introduced for constructing a network of IDR topics and for evaluating their effectiveness for knowledge structure exploration.Design/methodolo...Purpose: Formal concept analysis(FCA) and concept lattice theory(CLT) are introduced for constructing a network of IDR topics and for evaluating their effectiveness for knowledge structure exploration.Design/methodology/approach: We introduced the theory and applications of FCA and CLT, and then proposed a method for interdisciplinary knowledge discovery based on CLT. As an example of empirical analysis, interdisciplinary research(IDR) topics in Information & Library Science(LIS) and Medical Informatics, and in LIS and Geography-Physical, were utilized as empirical fields. Subsequently, we carried out a comparative analysis with two other IDR topic recognition methods.Findings: The CLT approach is suitable for IDR topic identification and predictions.Research limitations: IDR topic recognition based on the CLT is not sensitive to the interdisciplinarity of topic terms, since the data can only reflect whether there is a relationship between the discipline and the topic terms. Moreover, the CLT cannot clearly represent a large amounts of concepts.Practical implications: A deeper understanding of the IDR topics was obtained as the structural and hierarchical relationships between them were identified, which can help to get more precise identification and prediction to IDR topics.Originality/value: IDR topics identification based on CLT have performed well and this theory has several advantages for identifying and predicting IDR topics. First, in a concept lattice, there is a partial order relation between interconnected nodes, and consequently, a complete concept lattice can present hierarchical properties. Second, clustering analysis of IDR topics based on concept lattices can yield clusters that highlight the essential knowledge features and help display the semantic relationship between different IDR topics. Furthermore, the Hasse diagram automatically displays all the IDR topics associated with the different disciplines, thus forming clusters of specific concepts and visually retaining and presenting the associations of IDR topics through multiple inheritance relationships between the concepts.展开更多
基金The National Natural Science Foundation of China(No60672056)Open Fund of MOE-MS Key Laboratory of Multime-dia Computing and Communication(No06120809)
文摘To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.
基金an outcome of the project "Study on the Recognition Method of Innovative Evolving Trajectory based on Topic Correlation Analysis of Science and Technology" (No. 71704170) supported by National Natural Science Foundation of Chinathe project "Study on Regularity and Dynamics of Knowledge Diffusion among Scientific Disciplines" (No. 71704063) supported by National Natura Science Foundation of Chinathe Youth Innovation Promotion Association, CAS (Grant No. 2016159)
文摘Purpose: Formal concept analysis(FCA) and concept lattice theory(CLT) are introduced for constructing a network of IDR topics and for evaluating their effectiveness for knowledge structure exploration.Design/methodology/approach: We introduced the theory and applications of FCA and CLT, and then proposed a method for interdisciplinary knowledge discovery based on CLT. As an example of empirical analysis, interdisciplinary research(IDR) topics in Information & Library Science(LIS) and Medical Informatics, and in LIS and Geography-Physical, were utilized as empirical fields. Subsequently, we carried out a comparative analysis with two other IDR topic recognition methods.Findings: The CLT approach is suitable for IDR topic identification and predictions.Research limitations: IDR topic recognition based on the CLT is not sensitive to the interdisciplinarity of topic terms, since the data can only reflect whether there is a relationship between the discipline and the topic terms. Moreover, the CLT cannot clearly represent a large amounts of concepts.Practical implications: A deeper understanding of the IDR topics was obtained as the structural and hierarchical relationships between them were identified, which can help to get more precise identification and prediction to IDR topics.Originality/value: IDR topics identification based on CLT have performed well and this theory has several advantages for identifying and predicting IDR topics. First, in a concept lattice, there is a partial order relation between interconnected nodes, and consequently, a complete concept lattice can present hierarchical properties. Second, clustering analysis of IDR topics based on concept lattices can yield clusters that highlight the essential knowledge features and help display the semantic relationship between different IDR topics. Furthermore, the Hasse diagram automatically displays all the IDR topics associated with the different disciplines, thus forming clusters of specific concepts and visually retaining and presenting the associations of IDR topics through multiple inheritance relationships between the concepts.