期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于轨迹分段LDA主题模型的视频异常行为检测方法 被引量:9
1
作者 郑併斌 范新南 +1 位作者 李敏 张继 《计算机应用》 CSCD 北大核心 2015年第2期515-518,565,共5页
基于目标轨迹的异常行为检测算法忽略了轨迹内部信息,容易导致异常检测虚警率偏高。为解决该问题,提出一种基于轨迹分段主题模型的视频异常行为检测方法。首先将目标原始轨迹根据轨迹转角分段,然后采用分段量化的方式提取轨迹片段中包... 基于目标轨迹的异常行为检测算法忽略了轨迹内部信息,容易导致异常检测虚警率偏高。为解决该问题,提出一种基于轨迹分段主题模型的视频异常行为检测方法。首先将目标原始轨迹根据轨迹转角分段,然后采用分段量化的方式提取轨迹片段中包含的行为特征信息,接着通过潜在狄利克雷分配(LDA)主题模型建模发掘目标轨迹之间的时空关系,最后通过学习所构建的模型并结合贝叶斯理论进行行为模式分析和异常行为检测。分别对两个视频场景进行了目标行为模式分析和异常行为检测的仿真实验,检测出了场景内多种异常行为模式。实验结果表明,通过结合轨迹分段与LDA主题模型,该算法能够充分挖掘目标轨迹内部的行为特征信息,识别多种异常行为模式,并且能提高对异常行为检测的准确率。 展开更多
关键词 视频分析 行为模式分析 异常检测 潜在狄利克雷分配 主题模型 轨迹分段
下载PDF
面向短文本分析的分布式表示模型 被引量:7
2
作者 梁吉业 乔洁 +1 位作者 曹付元 刘晓琳 《计算机研究与发展》 EI CSCD 北大核心 2018年第8期1631-1640,共10页
短文本的分布式表示已经成为文本数据挖掘的一项重要任务.然而,直接应用分布式表示模型Paragraph Vector尚有不足,其根本原因是其在训练过程中并没有利用到语料库级别的信息,从而不能有效改善短文本中语境信息不足的情况.鉴于此,提出了... 短文本的分布式表示已经成为文本数据挖掘的一项重要任务.然而,直接应用分布式表示模型Paragraph Vector尚有不足,其根本原因是其在训练过程中并没有利用到语料库级别的信息,从而不能有效改善短文本中语境信息不足的情况.鉴于此,提出了一种面向短文本分析的分布式表示模型——词对主题句向量模型(biterm topic paragraph vector,BTPV),该模型通过将词对主题模型(biterm topic model,BTM)得出的主题信息融入Paragraph Vector中,不仅使得模型训练过程中利用到了全局语料库的信息,而且还利用BTM显性的主题表示完善了Paragraph Vector隐性的空间向量.实验采用爬取到的热门新闻评论作为数据集,并选用K-Means聚类算法对各模型的短文本表示效果进行比较.实验结果表明,基于BTPV模型的分布式表示较常见的分布式向量化模型word2vec和Paragraph Vector来说能取得更好的短文本聚类效果,从而显现出该模型面向短文本分析的优势. 展开更多
关键词 分布式表示 短文本 文本分析 句向量 词对主题模型
下载PDF
Semantic Knowledge Acquisition from Blogs with Tag-Topic Model 被引量:3
3
作者 He Tingting Li Fang 《China Communications》 SCIE CSCD 2012年第3期38-48,共11页
This paper focuses on semantic knowl- edge acquisition from blogs with the proposed tag- topic model. The model extends the Latent Dirichlet Allocation (LDA) model by adding a tag layer be- tween the document and th... This paper focuses on semantic knowl- edge acquisition from blogs with the proposed tag- topic model. The model extends the Latent Dirichlet Allocation (LDA) model by adding a tag layer be- tween the document and the topic. Each document is represented by a mixture of tags; each tag is as- sociated with a multinomial distribution over topics and each topic is associated with a multinomial dis- trNution over words. After parameter estimation, the tags are used to descrNe the underlying topics. Thus the latent semantic knowledge within the top- ics could be represented explicitly. The tags are treated as concepts, and the top-N words from the top topics are selected as related words of the con- cepts. Then PMI-IR is employed to compute the re- latedness between each tag-word pair and noisy words with low correlation removed to improve the quality of the semantic knowledge. Experiment re- sults show that the proposed method can effectively capture semantic knowledge, especially the polyse- me and synonym. 展开更多
关键词 semantic knowledge acquisition topicmodel TAG
下载PDF
Online belief propagation algorithm for probabilistic latent semantic analysis 被引量:2
4
作者 Yun YE Shengrong GONG +3 位作者 Chunping LIU Jia ZENG Ning JIA YiZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期526-535,共10页
Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, th... Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, the required memory size grows linearly with the data size, and handling massive data streams is very difficult. To process big data streams, we propose an online belief propagation (OBP) algorithm based on the improved factor graph representation for PLSA. The factor graph of PLSA facilitates the classic belief propagation (BP) algorithm. Furthermore, OBP splits the data stream into a set of small segments, and uses the estimated parameters of previous segments to calculate the gradient descent of the current segment. Because OBP removes each segment from memory after processing, it is memoryefficient for big data streams. We examine the performance of OBP on four document data sets, and demonstrate that OBP is competitive in both speed and accuracy for online ex- pectation maximization (OEM) in PLSA, and can also give a more accurate topic evolution. Experiments on massive data streams from Baidu further confirm the effectiveness of the OBP algorithm. 展开更多
关键词 probabilistic latent semantic analysis topicmodels expectation maximization belief propagation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部