Topological method was applied firstly to calculate the topological connectivity index of minerals (TCIM). The reciprocal of effective atomic refractivity of metal element in minerals was chosen as its valence. The re...Topological method was applied firstly to calculate the topological connectivity index of minerals (TCIM). The reciprocal of effective atomic refractivity of metal element in minerals was chosen as its valence. The reasonability of TCIM as an activity criterion was tested through comparison of TCIM with two kinds of electronegativity parameter, i.e. ionic percentage and energy criteria of Yang’s electronegativity, solubility product, energy criterion according to the generalized perturbation theory and adsorption of flotation reagents on the surface of minerals. The results indicated that TCIM is an effective structural parameter of minerals to study the structure activity relationship. In addition, different mineral is of different TCIM value, so TCIM brings about convenience in comparison of flotation activity for minerals.展开更多
Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quan...Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of S i.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.展开更多
The shrinking silicon feature size causes the continuous increment of the aging effect due to the negative bias temperature instability (NBTI), which becomes a potential stopper for IC development. As the basis of c...The shrinking silicon feature size causes the continuous increment of the aging effect due to the negative bias temperature instability (NBTI), which becomes a potential stopper for IC development. As the basis of circuit-level aging protection, an efficient aging critical-gate identification method is crucially required to select a set of gates for protection to guarantee the normal lifetime of the circuits. The existing critical-gate identification methods always depend on a critical path set which contains so many paths that its generation procedure requires undesirable CPU runtime; furthermore, these methods can achieve a better solution with taking account of the topological connection. This paper proposes a time-efficient critical gates identification method with topological connection analysis, which chooses a small set of critical gates. Experiments over many circuits of ITC99 and ISCAS benchmark demonstrate that, to guarantee the normal lifetime (e.g., 10 years) of each circuit, our method achieves a 3.97x speedup and saves as much as 27.21% area overhead compared with the existing methods.展开更多
The concept of metamorphic mechanisms is presented, configuration models and configuration transformations relating to a set of new matrix operations are discussed and proposed. The configuration of a metamorphic mech...The concept of metamorphic mechanisms is presented, configuration models and configuration transformations relating to a set of new matrix operations are discussed and proposed. The configuration of a metamorphic mechanism reflects the connectivity change in the mechanism during motions which results in mobility change and presents the characteristics of the mechanism which is discussed in various applications particularly in decorative artifacts. The characteristics is further investigated with mobility analysis.展开更多
This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy o...This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
Consensus in directed networks of multiple agents, as an important topic, has become an active research subject. Over the past several years, some types of consensus problems have been studied. In this paper, we propo...Consensus in directed networks of multiple agents, as an important topic, has become an active research subject. Over the past several years, some types of consensus problems have been studied. In this paper, we propose a novel type of consensus, the generalized consensus (GC), which includes the traditional consensus, the anti-consensus, and the cluster consensus as its special cases. Based on the Lyapunov's direct method and the graph theory, a simple control algorithm is designed to achieve the generalized consensus in a network of agents. Numerical simulations of linear and nonlinear GC are used to verify the effectiveness of the theoretical analysis.展开更多
A new Zn(Ⅱ) coordination polymer, {[Zn(1,3-bip)(oba)]·0.5H2O}n(1),1,3-bip =1,3-bis(imidazole)propane, H2oba=4,4?-oxybis(benzoate)), have been synthesized and characterized by single-crystal X-ray d...A new Zn(Ⅱ) coordination polymer, {[Zn(1,3-bip)(oba)]·0.5H2O}n(1),1,3-bip =1,3-bis(imidazole)propane, H2oba=4,4?-oxybis(benzoate)), have been synthesized and characterized by single-crystal X-ray diffraction, powder XRD, FTIR, TGA and elemental analysis techniques. The single-crystal X-ray diffraction reveals that complex 1 shows a 3D→3D twofold interpenetrating network that can be described as a 4-connected uninodal net with(65.8) topology. In addition, the photoluminescence property of complex 1 was also investigated at room temperature.展开更多
New appronches were applied to improve the molecular connectivity indices m^X^τ. The vertex valence is redefined and it was reasonable for hydrogen atom. The distances between vertices were used to propose novel conn...New appronches were applied to improve the molecular connectivity indices m^X^τ. The vertex valence is redefined and it was reasonable for hydrogen atom. The distances between vertices were used to propose novel connectivity topological indexes. The vertices and the distances in a molecular graph were taken into account in this definition. The linear regression was used to develop the structural property models. The results indicate that the novel connectivity topological indexes are useful model parameters for Quantitative Strncture-Property Relationship ( QSPR ) analysis.展开更多
Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering applicatio...Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering application.The existing fault-tolerant dynamical consensus protocol suitable for synchronous SSFFs cannot be directly used to tackle fault-tolerant dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFFs.Motivated by these facts,this paper explores a new fault-tolerant dynamical consensus protocol suitable for asynchronous SSFFs.First,multi-hop communication together with the idea of treating asynchronous SSFFs as multiple piecewise synchronous SSFFs is used for recovering the connectivity of network topology among all normal agents.Second,a fault-tolerant dynamical consensus protocol is designed for double-integrator MASs by utilizing the history information of an agent subject to SSFF for computing its own state information at the instants when its minimum-hop normal neighbor set changes.Then,it is theoretically proved that if the strategy of network topology connectivity recovery and the fault-tolerant dynamical consensus protocol with proper time-varying gains are used simultaneously,double-integrator MASs with all normal agents and all agents subject to SSFFs can reach dynamical consensus.Finally,comparison numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
It is well established that complex networks are responsible for the high-level information processing in the human brain.The topology of complex networks allows efficient dynamic interactions between spatially distin...It is well established that complex networks are responsible for the high-level information processing in the human brain.The topology of complex networks allows efficient dynamic interactions between spatially distinct brain areas,which may be studied by analyzing the topological展开更多
In this study, recovery processes of isotactic polypropylene (iPP) melted spherulites at 135 ℃ after melting at higher temperatures (170 ℃-176 ℃) were investigated with polarized optical microscopy and Fourier ...In this study, recovery processes of isotactic polypropylene (iPP) melted spherulites at 135 ℃ after melting at higher temperatures (170 ℃-176 ℃) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 ℃ and 174 ℃, the melted spherulite could recover back to the origin spberulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures.展开更多
The zona incerta(ZI)is involved in various functions and may serve as an integrative node of the circuits for global behavioral modulation.However,the long-range connectivity of different sectors in the mouse ZI has n...The zona incerta(ZI)is involved in various functions and may serve as an integrative node of the circuits for global behavioral modulation.However,the long-range connectivity of different sectors in the mouse ZI has not been comprehensively mapped.Here,we obtained whole-brain images of the input and output connections via fluorescence micro-optical sectioning tomography and viral tracing.The principal regions in the input-output circuits of ZI GABAergic neurons were topologically organized.The 3D distribution of cortical inputs showed rostro-caudal correspondence with different ZI sectors,while the projection fibers from ZI sectors were longitudinally organized in the superior colliculus.Clustering results show that the medial and lateral ZI are two different major functional compartments,and they can be further divided into more subdomains based on projection and input connectivity.This study provides a comprehensive anatomical foundation for understanding how the ZI is involved in integrating different information,conveying motivational states,and modulating global behaviors.展开更多
Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with ...Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.展开更多
Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unma...Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.展开更多
文摘Topological method was applied firstly to calculate the topological connectivity index of minerals (TCIM). The reciprocal of effective atomic refractivity of metal element in minerals was chosen as its valence. The reasonability of TCIM as an activity criterion was tested through comparison of TCIM with two kinds of electronegativity parameter, i.e. ionic percentage and energy criteria of Yang’s electronegativity, solubility product, energy criterion according to the generalized perturbation theory and adsorption of flotation reagents on the surface of minerals. The results indicated that TCIM is an effective structural parameter of minerals to study the structure activity relationship. In addition, different mineral is of different TCIM value, so TCIM brings about convenience in comparison of flotation activity for minerals.
文摘Bond connectivity topological index S i based on chemical bonds was defined by using a matrix method.And S i is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of S i.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.
基金supported by the National Natural Science Foundation of China under Grant No.61274036,No.61371025,No.61204027,and No.61474036
文摘The shrinking silicon feature size causes the continuous increment of the aging effect due to the negative bias temperature instability (NBTI), which becomes a potential stopper for IC development. As the basis of circuit-level aging protection, an efficient aging critical-gate identification method is crucially required to select a set of gates for protection to guarantee the normal lifetime of the circuits. The existing critical-gate identification methods always depend on a critical path set which contains so many paths that its generation procedure requires undesirable CPU runtime; furthermore, these methods can achieve a better solution with taking account of the topological connection. This paper proposes a time-efficient critical gates identification method with topological connection analysis, which chooses a small set of critical gates. Experiments over many circuits of ITC99 and ISCAS benchmark demonstrate that, to guarantee the normal lifetime (e.g., 10 years) of each circuit, our method achieves a 3.97x speedup and saves as much as 27.21% area overhead compared with the existing methods.
文摘The concept of metamorphic mechanisms is presented, configuration models and configuration transformations relating to a set of new matrix operations are discussed and proposed. The configuration of a metamorphic mechanism reflects the connectivity change in the mechanism during motions which results in mobility change and presents the characteristics of the mechanism which is discussed in various applications particularly in decorative artifacts. The characteristics is further investigated with mobility analysis.
基金Project supported by the National Natural Science Foundation of China(Grant No.61876073)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP21920)
文摘This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11002061 and 11202084)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRP51317B)
文摘Consensus in directed networks of multiple agents, as an important topic, has become an active research subject. Over the past several years, some types of consensus problems have been studied. In this paper, we propose a novel type of consensus, the generalized consensus (GC), which includes the traditional consensus, the anti-consensus, and the cluster consensus as its special cases. Based on the Lyapunov's direct method and the graph theory, a simple control algorithm is designed to achieve the generalized consensus in a network of agents. Numerical simulations of linear and nonlinear GC are used to verify the effectiveness of the theoretical analysis.
基金Supported by the National Youth Natural Science Foundation of China(No.21603133)
文摘A new Zn(Ⅱ) coordination polymer, {[Zn(1,3-bip)(oba)]·0.5H2O}n(1),1,3-bip =1,3-bis(imidazole)propane, H2oba=4,4?-oxybis(benzoate)), have been synthesized and characterized by single-crystal X-ray diffraction, powder XRD, FTIR, TGA and elemental analysis techniques. The single-crystal X-ray diffraction reveals that complex 1 shows a 3D→3D twofold interpenetrating network that can be described as a 4-connected uninodal net with(65.8) topology. In addition, the photoluminescence property of complex 1 was also investigated at room temperature.
基金Funded bythe Natural Science andthe Education Office Founda-tion of Hubei Province(No.2005ABA016 and 2004Q002)
文摘New appronches were applied to improve the molecular connectivity indices m^X^τ. The vertex valence is redefined and it was reasonable for hydrogen atom. The distances between vertices were used to propose novel connectivity topological indexes. The vertices and the distances in a molecular graph were taken into account in this definition. The linear regression was used to develop the structural property models. The results indicate that the novel connectivity topological indexes are useful model parameters for Quantitative Strncture-Property Relationship ( QSPR ) analysis.
基金National Natural Science Foundation of China(No.61876073)Fundamental Research Funds for the Central Universities of China(No.JUSRP21920)。
文摘Double-integrator multi-agent systems(MASs)might not achieve dynamical consensus,even if only partial agents suffer from self-sensing function failures(SSFFs).SSFFs might be asynchronous in real engineering application.The existing fault-tolerant dynamical consensus protocol suitable for synchronous SSFFs cannot be directly used to tackle fault-tolerant dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFFs.Motivated by these facts,this paper explores a new fault-tolerant dynamical consensus protocol suitable for asynchronous SSFFs.First,multi-hop communication together with the idea of treating asynchronous SSFFs as multiple piecewise synchronous SSFFs is used for recovering the connectivity of network topology among all normal agents.Second,a fault-tolerant dynamical consensus protocol is designed for double-integrator MASs by utilizing the history information of an agent subject to SSFF for computing its own state information at the instants when its minimum-hop normal neighbor set changes.Then,it is theoretically proved that if the strategy of network topology connectivity recovery and the fault-tolerant dynamical consensus protocol with proper time-varying gains are used simultaneously,double-integrator MASs with all normal agents and all agents subject to SSFFs can reach dynamical consensus.Finally,comparison numerical simulations are given to illustrate the effectiveness of the theoretical results.
文摘It is well established that complex networks are responsible for the high-level information processing in the human brain.The topology of complex networks allows efficient dynamic interactions between spatially distinct brain areas,which may be studied by analyzing the topological
基金financially supported by the China Postdoctoral Science Foundation(No.2012M521233)the Fundamental Research Funds for the Central Universities(WK2310000031)+3 种基金the National Natural Science Foundation of China(Nos.51033004,51227801,51303166)National Natural Science Funds for Distinguished Young Scholars(No.51325301)the 973 program of MOST(2010CB934504)supported by the Opening Project of Soochow University Biomedical Polymers Laboratory and the Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application(Soochow University)
文摘In this study, recovery processes of isotactic polypropylene (iPP) melted spherulites at 135 ℃ after melting at higher temperatures (170 ℃-176 ℃) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 ℃ and 174 ℃, the melted spherulite could recover back to the origin spberulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures.
基金National Natural ScienceFoundation of China(61890953 and 31871088)the Chinese Academy of Medical Sciences Innovation Fund forMedical Sciences(2019-12M-5-014)the Director Fund of Wuhan National Laboratory for Optoelectronics.
文摘The zona incerta(ZI)is involved in various functions and may serve as an integrative node of the circuits for global behavioral modulation.However,the long-range connectivity of different sectors in the mouse ZI has not been comprehensively mapped.Here,we obtained whole-brain images of the input and output connections via fluorescence micro-optical sectioning tomography and viral tracing.The principal regions in the input-output circuits of ZI GABAergic neurons were topologically organized.The 3D distribution of cortical inputs showed rostro-caudal correspondence with different ZI sectors,while the projection fibers from ZI sectors were longitudinally organized in the superior colliculus.Clustering results show that the medial and lateral ZI are two different major functional compartments,and they can be further divided into more subdomains based on projection and input connectivity.This study provides a comprehensive anatomical foundation for understanding how the ZI is involved in integrating different information,conveying motivational states,and modulating global behaviors.
基金the National Science Foundation of China under Grant No.61772013the Natural Science Foundation of Jiangsu Province under Grant No.BK20181342。
文摘Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.
基金This work is supported by NNSFC Nos 61603383 and CXJJ-16Z212.
文摘Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.