In this paper,we study the existence of"weak solution"for a class of p(x)-Kirchhoff type problem involving the p(x)-Laplacian-like operator depending on two real parameters with Neumann boundary condition.Us...In this paper,we study the existence of"weak solution"for a class of p(x)-Kirchhoff type problem involving the p(x)-Laplacian-like operator depending on two real parameters with Neumann boundary condition.Using a topological degree for a class of demicontinuous operator of generalized(S_(+))type and the theory of the variable exponent Sobolev space,we establish the existence of"weak solution"of this problem.展开更多
This paper concerns the existence of affine-periodic solutions for perturbed affine-periodic systems.This kind of affine-periodic solutions has the form of x(t+T)≡Qx(t) with some nonsingular matrix Q,which may be qua...This paper concerns the existence of affine-periodic solutions for perturbed affine-periodic systems.This kind of affine-periodic solutions has the form of x(t+T)≡Qx(t) with some nonsingular matrix Q,which may be quasi-periodic when Q is an orthogonal matrix. It can be even unbounded but x(t)/|x(t)| is quasi-periodic,like a helical line. for example x(t)=e^(at)(cos ωt, sin ωt), when Q is not an orthogonal matrix. The averaging method of higher order for finding affine-periodic solutions is given by topological degree.展开更多
文摘In this paper,we study the existence of"weak solution"for a class of p(x)-Kirchhoff type problem involving the p(x)-Laplacian-like operator depending on two real parameters with Neumann boundary condition.Using a topological degree for a class of demicontinuous operator of generalized(S_(+))type and the theory of the variable exponent Sobolev space,we establish the existence of"weak solution"of this problem.
基金supported by National Basic Research Program of China (Grant No. 2013CB834100)National Natural Science Foundation of China (Grant Nos. 11571065,11171132 and 11201173)
文摘This paper concerns the existence of affine-periodic solutions for perturbed affine-periodic systems.This kind of affine-periodic solutions has the form of x(t+T)≡Qx(t) with some nonsingular matrix Q,which may be quasi-periodic when Q is an orthogonal matrix. It can be even unbounded but x(t)/|x(t)| is quasi-periodic,like a helical line. for example x(t)=e^(at)(cos ωt, sin ωt), when Q is not an orthogonal matrix. The averaging method of higher order for finding affine-periodic solutions is given by topological degree.