Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining ...Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.展开更多
In this article, a topological sensitivity framework for far-field detection of a diamet- rically small electromagnetic inclusion is established. The cases of single and multiple measurements of the electric far-field...In this article, a topological sensitivity framework for far-field detection of a diamet- rically small electromagnetic inclusion is established. The cases of single and multiple measurements of the electric far-field scattering amplitude at a fixed frequency are tak- en into account. The performance of the algorithm is analyzed theoretically in terms of its resolution and sensitivity for locating an inclusion. The stability of the framework with respect to measurement and medium noises is discussed. Moreover, the quantitative results for signal-to-noise ratio are presented. A few numerical results are presented to illustrate the detection capabilities of the proposed framework with single and multiple measurements.展开更多
A new technique is proposed for the analysis of shape optimization problems. The technique uses the asymptotic analysis of boundary value problems in singularly perturbed geometrical domains. The asymptotics of soluti...A new technique is proposed for the analysis of shape optimization problems. The technique uses the asymptotic analysis of boundary value problems in singularly perturbed geometrical domains. The asymptotics of solutions are derived in the framework of compound and matched asymptotics expansions. The analysis involves the so-called interior topology variations. The asymptotic expansions are derived for a model problem, however the technique applies to general elliptic boundary value problems. The self-adjoint extensions of elliptic operators and the weighted spaces with detached asymptotics are exploited for the modelling of problems with small defects in geometrical domains, The error estimates for proposed approximations of shape functionals are provided.展开更多
基金This project is supported by National Natural Science Foundation of China(No.598005001, No.10332010) and Key Science and Technology Research Project of Ministry of Education (No.104060).
文摘Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.
文摘In this article, a topological sensitivity framework for far-field detection of a diamet- rically small electromagnetic inclusion is established. The cases of single and multiple measurements of the electric far-field scattering amplitude at a fixed frequency are tak- en into account. The performance of the algorithm is analyzed theoretically in terms of its resolution and sensitivity for locating an inclusion. The stability of the framework with respect to measurement and medium noises is discussed. Moreover, the quantitative results for signal-to-noise ratio are presented. A few numerical results are presented to illustrate the detection capabilities of the proposed framework with single and multiple measurements.
基金Partially supported by INRIA in the framework of the grant 00-01 from Institrt france-russe A.M.Liapunov d'informatique et de mathmatiques appliquesby the grant 4 TIIA 01524 of the State Committee for the Scientific Research of the Republic of Po
文摘A new technique is proposed for the analysis of shape optimization problems. The technique uses the asymptotic analysis of boundary value problems in singularly perturbed geometrical domains. The asymptotics of solutions are derived in the framework of compound and matched asymptotics expansions. The analysis involves the so-called interior topology variations. The asymptotic expansions are derived for a model problem, however the technique applies to general elliptic boundary value problems. The self-adjoint extensions of elliptic operators and the weighted spaces with detached asymptotics are exploited for the modelling of problems with small defects in geometrical domains, The error estimates for proposed approximations of shape functionals are provided.