The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases...The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases in SX superalloys based on the latest findings.First,the thermodynamics and kinetics of the TCP phase precipitation are introduced.Meanwhile,the morphology,composition and orientation of TCP phases and their sequential transformation are summarized in detail.Further,the factors affecting the precipitation of these phases are sorted out.Besides,the proposed damage mechanisms of TCP phases are listed.Finally,several control and prediction methods of the TCP phase precipitation are reviewed,so the alloy designer can better balance the relationship between microstructure stabilities and properties of the superalloy.展开更多
We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t...We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.展开更多
Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material unde...Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling.When strain effect is considered,band inversion at time-reversal invariant point Z is responsible for the topological phase transition.These nontrivial topologies are caused by two different types of band crossings.The observable topological surface states in(110)surface also support that this material experiences topological phase transition twice.The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.展开更多
The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence ...The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence between the average spin texture and the Floquet quasi-energy spectrum.A new approach is proposed to directly measure the quasienergy spectrum,replacing previous measurements of the average spin texture.Finally,we proposed a reliable experimental scheme based on ion trap platforms.This scheme markedly reduces the measurement workload,improves the measurement fidelity,and is applicable to multiple platforms such as cold atoms and nuclear magnetic resonance.展开更多
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal f...We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal form and the winding number can be defined with the determine of the block off-diagonal matrix. We find the determine of the offdiagonal matrix has nothing to do with the interleg hopping of the ladder. So the topological phases of the model are the same as those of the chains. Further numerical simulations verify the analysis.展开更多
We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gase...We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gases, both spinsinglet pairing and spin-triplet pairing are considered. There exists a critical t'c for the NNN hopping, at which the quantum phase transition occurs, and the system changes from an Abelian(non-Abelian) phase to a non-Abelian(Abelian) one. By numerically diagonalizing the Hamiltonian in the real space, the energy spectra with edge states for different topological phases and the Majorana zero modes are discussed. Although the spin-triplet pairing does not contribute to the gap closing and the phase diagram, it induces gapless states in the presence of a magnetic field, and the TKNN number in this region is still zero.展开更多
Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,...Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.展开更多
With the aid of 3-dimensional topological analysis methodology,relationships among phage regions on the isothermal section of the Nd-Fe-B phase diagram at 1000℃ and those on vertical sections of the Pr-Fe-B phase dia...With the aid of 3-dimensional topological analysis methodology,relationships among phage regions on the isothermal section of the Nd-Fe-B phase diagram at 1000℃ and those on vertical sections of the Pr-Fe-B phase diagram passing through Pr_2 Fe_(14)B point have been re-discussed and modified.展开更多
We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain su...We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z;index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z;index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential.展开更多
The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compoun...The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compound is stable in the ferromagnetic phase and the other ThXY compounds are stable in nonmagnetic phases. Band structures of these compounds in topological phases (insulator or metal) and normal phases within generalized gradient approximation (GGA) and Engel- Vosko generalized gradient approximation (GGA_EV) are compared. The ThPtSn, ThPtBi, ThPtSb, ThPdBi, and ThAuBi compounds have topological phases and the other ThXY compounds have normal phases. Band inversion strengths and topological phases of these compounds at different pressure are studied. It is seen that the band inversion strengths of these compounds are sensitive to pressure and for each compound a second-order polynomial fitted on the band inversion strengths-pressure curves.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero...In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.展开更多
We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state...We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated.It is found that the cavity optomechanical system can be modulated to different topological Su–Schrieffer–Heeger(SSH)phases via designing the optomechanical couplings legitimately.Meanwhile,combining the effective optomechanical couplings and the probability distributions of gap states,we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields.Moreover,we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.展开更多
We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra...We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.展开更多
A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured thr...A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the k·p perturbation theory. The phononic topology is related to a pseudo-timereversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.展开更多
Motivated by the fact that Weyl fermions can emerge in a three-dimensional topological insulator on breaking either time-reversal or inversion symmetries,we propose that a topological quantum phase transition to a Wey...Motivated by the fact that Weyl fermions can emerge in a three-dimensional topological insulator on breaking either time-reversal or inversion symmetries,we propose that a topological quantum phase transition to a Weyl semimetal phase occurs under the off-resonant circularly polarized light,in a three-dimensional topological insulator,when the intensity of the incident light exceeds a critical value.The circularly polarized light effectively generates a Zeeman exchange field and a renormalized Dirac mass,which are highly controllable.The phase transition can be exactly characterized by the first Chern number.A tunable anomalous Hall conductivity emerges,which is fully determined by the location of the Weyl nodes in momentum space,even in the doping regime.Our predictions are experimentally realizable through pump-probe angle-resolved photoemission spectroscopy and raise a new way for realizing Weyl semimetals and quantum anomalous Hall effects.展开更多
In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the to...In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the topological currentform of RS vortices and use this topological current we reveal that the Hopf invariant of RS vortices is just the sum ofthe linking and self-linking numbers of the knotted RS vortices.Furthermore,the conservation of the Hopf invariant inthe splitting,the mergence and the intersection processes of knotted RS vortices is also discussed.展开更多
The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realize...The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant(winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.展开更多
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topologica...Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.展开更多
基金financially supported by the National Science and Technology Major Project(No.2019-VII-0019-0161)Science Center for Gas Turbine Project(No.P2021-A-Ⅳ-001-002)+1 种基金National Key Research and Development Program of China under Grant(No.2017YFA0700704)National Natural Science Foundation of China(No.51971214).
文摘The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases in SX superalloys based on the latest findings.First,the thermodynamics and kinetics of the TCP phase precipitation are introduced.Meanwhile,the morphology,composition and orientation of TCP phases and their sequential transformation are summarized in detail.Further,the factors affecting the precipitation of these phases are sorted out.Besides,the proposed damage mechanisms of TCP phases are listed.Finally,several control and prediction methods of the TCP phase precipitation are reviewed,so the alloy designer can better balance the relationship between microstructure stabilities and properties of the superalloy.
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LR22A040001 and LY21A040004)the National Natural Science Foundation of China (Grant Nos.12074342 and 11835011)。
文摘We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
文摘Based on first-principles calculations,we investigate the electronic band structures and topological properties of heterostructure BiTeCl/HfTe_(2) under c-direction strain.In the primitive structure,this material undergoes a phase transition from an insulator with a narrow indirect gap to a metal by strong spin-orbital coupling.When strain effect is considered,band inversion at time-reversal invariant point Z is responsible for the topological phase transition.These nontrivial topologies are caused by two different types of band crossings.The observable topological surface states in(110)surface also support that this material experiences topological phase transition twice.The layered heterostructure with van der Waals force provides us with a new desirable platform upon which to control topological phase transition and construct topological superconductors.
基金the National Natural Science Foun-dation of China(Grant Nos.11904402,12174447,12074433,12004430,and 12174448).
文摘The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence between the average spin texture and the Floquet quasi-energy spectrum.A new approach is proposed to directly measure the quasienergy spectrum,replacing previous measurements of the average spin texture.Finally,we proposed a reliable experimental scheme based on ion trap platforms.This scheme markedly reduces the measurement workload,improves the measurement fidelity,and is applicable to multiple platforms such as cold atoms and nuclear magnetic resonance.
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.
基金Project supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.A2012203174 and A2015203387)the National Natural Science Foundation of China(Grant Nos.10974169 and 11304270)
文摘We study topological phases of a non-Hermitian coupled Su-Schrieffer-Heeger(SSH) ladder. The model originates from the brick-wall lattices in the two-row limit. The Hamiltonian can be brought into block off-diagonal form and the winding number can be defined with the determine of the block off-diagonal matrix. We find the determine of the offdiagonal matrix has nothing to do with the interleg hopping of the ladder. So the topological phases of the model are the same as those of the chains. Further numerical simulations verify the analysis.
基金supported by the National Natural Science Foundation of China(Grant No.11304281)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY13D060002)
文摘We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gases, both spinsinglet pairing and spin-triplet pairing are considered. There exists a critical t'c for the NNN hopping, at which the quantum phase transition occurs, and the system changes from an Abelian(non-Abelian) phase to a non-Abelian(Abelian) one. By numerically diagonalizing the Hamiltonian in the real space, the energy spectra with edge states for different topological phases and the Majorana zero modes are discussed. Although the spin-triplet pairing does not contribute to the gap closing and the phase diagram, it induces gapless states in the presence of a magnetic field, and the TKNN number in this region is still zero.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11634010,91850118,11774289,61675168,and 11804277)the National Key Research and Development Program of China(Grant No.2017YFA0303800)+1 种基金the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1630125)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy036,3102019JC008,and 310201911cx022)。
文摘Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.
文摘With the aid of 3-dimensional topological analysis methodology,relationships among phage regions on the isothermal section of the Nd-Fe-B phase diagram at 1000℃ and those on vertical sections of the Pr-Fe-B phase diagram passing through Pr_2 Fe_(14)B point have been re-discussed and modified.
基金supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z;index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z;index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential.
文摘The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compound is stable in the ferromagnetic phase and the other ThXY compounds are stable in nonmagnetic phases. Band structures of these compounds in topological phases (insulator or metal) and normal phases within generalized gradient approximation (GGA) and Engel- Vosko generalized gradient approximation (GGA_EV) are compared. The ThPtSn, ThPtBi, ThPtSb, ThPdBi, and ThAuBi compounds have topological phases and the other ThXY compounds have normal phases. Band inversion strengths and topological phases of these compounds at different pressure are studied. It is seen that the band inversion strengths of these compounds are sensitive to pressure and for each compound a second-order polynomial fitted on the band inversion strengths-pressure curves.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274379)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.14XNLQ07)
文摘In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.
基金the National Natural Science Foundation of China(Grant Nos.61822114,12074330,and 62071412)。
文摘We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation.By calculating the steady-state equations of the system,the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated.It is found that the cavity optomechanical system can be modulated to different topological Su–Schrieffer–Heeger(SSH)phases via designing the optomechanical couplings legitimately.Meanwhile,combining the effective optomechanical couplings and the probability distributions of gap states,we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields.Moreover,we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440)the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100)the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903)。
文摘We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
基金Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016AQ09)Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11704219).
文摘A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the k·p perturbation theory. The phononic topology is related to a pseudo-timereversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804070)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ19A040007).
文摘Motivated by the fact that Weyl fermions can emerge in a three-dimensional topological insulator on breaking either time-reversal or inversion symmetries,we propose that a topological quantum phase transition to a Weyl semimetal phase occurs under the off-resonant circularly polarized light,in a three-dimensional topological insulator,when the intensity of the incident light exceeds a critical value.The circularly polarized light effectively generates a Zeeman exchange field and a renormalized Dirac mass,which are highly controllable.The phase transition can be exactly characterized by the first Chern number.A tunable anomalous Hall conductivity emerges,which is fully determined by the location of the Weyl nodes in momentum space,even in the doping regime.Our predictions are experimentally realizable through pump-probe angle-resolved photoemission spectroscopy and raise a new way for realizing Weyl semimetals and quantum anomalous Hall effects.
基金supported by National Natural Science Foundation of China and the Cuiying Programme of Lanzhou University
文摘In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the topological currentform of RS vortices and use this topological current we reveal that the Hopf invariant of RS vortices is just the sum ofthe linking and self-linking numbers of the knotted RS vortices.Furthermore,the conservation of the Hopf invariant inthe splitting,the mergence and the intersection processes of knotted RS vortices is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12034012,12074232,12125406,and 11804204)1331KSC。
文摘The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant(winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.
基金Supported by the Major State Basic Research Development Program of China under Grant No 2016YFB0700700the National Natural Science Foundation of China(NSFC)under Grants Nos 11634003,11474273,61121491 and U1530401+1 种基金supported by the National Young 1000 Talents Plansupported by the Youth Innovation Promotion Association of CAS(2017154)
文摘Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.