期刊文献+
共找到64,166篇文章
< 1 2 250 >
每页显示 20 50 100
Harmonics in the Squirrel Cage Induction Motor Analytic Calculation Part III: Influence on the Torque-speed Characteristic 被引量:1
1
作者 G.Kovács 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期86-102,共17页
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an... The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end. 展开更多
关键词 Asynchronous parasitic torques Induction motor Squirrel cage rotor Space harmonics Synchronous parasitic torques
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:2
2
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
“Buckets effect”in the kinetics of electrocatalytic reactions 被引量:2
3
作者 Haowen Cui Yan-Xia Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期388-396,I0010,共10页
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo... In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships. 展开更多
关键词 Oxygen reduction reaction kinetics Zero order Rectangular hyperbolic relationship pH effect
下载PDF
Wedge-shaped HfO_(2) buffer layer-induced field-free spin-orbit torque switching of HfO_(2)/Pt/Co structure 被引量:1
4
作者 陈建辉 梁梦凡 +4 位作者 宋衍 袁俊杰 张梦旸 骆泳铭 王宁宁 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期662-667,共6页
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/... Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device. 展开更多
关键词 spin-orbit torque field-free switching HfO_(2) buffer layer
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries 被引量:2
5
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast Li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
Plasma-assisted aerogel interface engineering enables uniform Zn^(2+)flux and fast desolvation kinetics toward zinc metal batteries 被引量:1
6
作者 Zijian Xu Zhenhai Shi +7 位作者 Zhan Chang Fan Feng Zhuanyi Liu Dongkun Chu Jianguo Ren Zi-Feng Ma Suli Chen Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期29-38,I0002,共11页
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)... The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries. 展开更多
关键词 Zn metal batteries Aerogel interface Plasma Zn^(2+)migration kinetics Dendrite growth
下载PDF
Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials 被引量:1
7
作者 Yafei Liu Yusang Guo +3 位作者 Yaru Jiang Lizhuang Feng Yu Sun Yijing Wang 《Materials Reports(Energy)》 EI 2024年第1期3-22,共20页
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen... Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials. 展开更多
关键词 Magnesium hydride Thermodynamics and kinetics Catalyst doping NANOSTRUCTURES Hydrogenation and dehydrogenation
下载PDF
Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin–orbit torque efficiency
8
作者 赵乾 张腾飞 +6 位作者 何斌 李子木 张森富 于国强 王建波 刘青芳 魏晋武 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期688-694,共7页
Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncoll... Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias. 展开更多
关键词 ANTIFERROMAGNETS spin-orbit torque exchange bias spin torque ferromagnetic resonance
下载PDF
Spin-orbit torque effect in silicon-based sputtered Mn_(3)Sn film
9
作者 Sha Lu Dequan Meng +3 位作者 Adnan Khan Ziao Wang Shiwei Chen Shiheng Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期394-399,共6页
Noncollinear antiferromagnet Mn_(3)Sn has shown remarkable efficiency in charge-spin conversion,a novel magnetic spin Hall effect,and a stable topological antiferromagnetic state,which has resulted in great interest f... Noncollinear antiferromagnet Mn_(3)Sn has shown remarkable efficiency in charge-spin conversion,a novel magnetic spin Hall effect,and a stable topological antiferromagnetic state,which has resulted in great interest from researchers in the field of spin-orbit torque.Current research has primarily focused on the spin-orbit torque effect of epitaxially grown noncollinear antiferromagnet Mn_(3)Sn films.However,this method is not suitable for large-scale industrial preparation.In this study,amorphous Mn_(3)Sn films and Mn_(3)Sn/Py heterostructures were prepared using magnetron sputtering on silicon substrates.The spin-torque ferromagnetic resonance measurement demonstrated that only the conventional spin-orbit torque effect generated by in-plane polarized spin currents existed in the Mn_(3)Sn/Py heterostructure,with a spin-orbit torque efficiency of 0.016.Additionally,we prepared the perpendicular magnetized Mn_(3)Sn/CoTb heterostructure based on amorphous Mn_(3)Sn film,where the spin-orbit torque driven perpendicular magnetization switching was achieved with a lower critical switching current density(3.9×10^(7)A/cm^(2))compared to Ta/CoTb heterostructure.This research reveals the spin-orbit torque effect of amorphous Mn_(3)Sn films and establishes a foundation for further advancement in the practical application of Mn_(3)Sn materials in spintronic devices. 展开更多
关键词 SPINTRONICS noncollinear antiferromagnetism spin-orbit torque
下载PDF
Identification method of shoulder torque of screw-on curve of premium threaded connections for OCTG
10
作者 PENG Zhiniu WANG Minghua 《Baosteel Technical Research》 CAS 2024年第3期29-32,共4页
The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method ... The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method of curve curvature radius are discussed.A new method of sealing surface deformation is proposed based on the requirements of shoulder torque recognition.The calculation method and principle of PW value are elucidated and the advantages of this method are summarized.The proposed method considers the difference value of tightening torque and calculates the elastic deformation of the sealing surface,accurately reflecting the state of the thread compound and the correlation between torque change and elastic deformation of the sealing surface after compression. 展开更多
关键词 screw-on shoulder torque identification method smooth torque curve
下载PDF
Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries
11
作者 Ting Ma Jiaojiao Deng +8 位作者 Yuxiao Lin Qinghua Liang Liang Hu Xiaohu Wang Jun Liu Xinsheng Zhao Yinwei Li Ding Nan Xiaoliang Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期118-125,共8页
Organosulfur materials containing sulfur-sulfur bonds are an emerging class of high-capacity cathodes for lithium storage.However,it remains a great challenge to achieve rapid conversion reaction kinetics at practical... Organosulfur materials containing sulfur-sulfur bonds are an emerging class of high-capacity cathodes for lithium storage.However,it remains a great challenge to achieve rapid conversion reaction kinetics at practical testing conditions of high cathode mass loading and low electrolyte utilization.In this study,a Li-rich pyrolyzed polyacrylonitrile/selenium disulfide(pPAN/Se_(2)S_(3))composite cathode is synthesized by deep lithiation to address the above challenges.The Li-rich molecular structure significantly boosts the lithium storage kinetics by accelerating lithium diffusivity and improving electronic conductivity.Even under practical test conditions requiring a lean electrolyte(Electrolyte/sulfur ratio of 4.1μL mg^(-1))and high loading(7 mg cm^(-2)of pPAN/Se_(2)S_(3)),DL-pPAN/Se_(2)S_(3)exhibits a specific capacity of 558 mAh g^(-1),maintaining 484 mAh g^(-1)at the 100th cycle with an average Coulombic efficiency of near 100%.Moreover,it provides(electro)chemically stable Li resources to offset Li consumption over charge-discharge cycles.As a result the as-fabricated anode-free cell shows a superior cycling stability with 90%retention of the initial capacity over 45 cycles.This study provides a novel approach for fabricating high-energy and stable Li-SPAN cells. 展开更多
关键词 LITHIUM kinetics ELECTROLYTE
下载PDF
Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton
12
作者 Yibo Han Hongtao Ma +6 位作者 Yapeng Wang Di Shi Yanggang Feng Xianzhong Li Yanjun Shi Xilun Ding Wuxiang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期83-99,共17页
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ... The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness. 展开更多
关键词 Lower limb exoskeleton Model compensation RBF neural network Computed torque method
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
13
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide GRAPHITE molten salt kinetic analysis
下载PDF
Continuous synthesis of N,N-dicyanoethylaniline in microreactors:Reaction kinetics and process intensification
14
作者 Pengcheng Lu Yaoyao Li +5 位作者 Jianjun Zhang Yuchao Zhao Qingqiang Wang Ying Chen Nan Jin Xiugang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期95-105,共11页
Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic o... Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors. 展开更多
关键词 Cyanoethylation MICROREACTOR kinetics N N-dicyanoethylaniline Optimization Safety
下载PDF
Kinetics insights into size effects of carbon nanotubes'growth and their supported platinum catalysts for 4,6-dinitroresorcinol hydrogenation
15
作者 Yan Zhang Xiangxue Zhang +6 位作者 Keng Sang Wenyao Chen Gang Qian Jing Zhang Xuezhi Duan Xinggui Zhou Weikang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期133-140,共8页
Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the pr... Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the preparation of carbon nanotube(CNT)and the hydrogenation of 4,6-dinitroresorcinol(DNR)using Fe_(2)O_(3)and Pt catalysts,respectively.Various Fe_(2)O_(3)/Al_(2)O_(3)catalysts were synthesized for CNT growth through catalytic chemical vapor deposition.Our findings reveal a significant influence of Fe_(2)O_(3)nanoparticle size on the structure and yield of CNT.Specifically,CNT produced with Fe_(2)O_(3)/Al_(2)O_(3)containing 28%(mass)Fe loading exhibits abundant surface defects,an increased area for metal-particle immobilization,and a high carbon yield.This makes it a promising candidate for DNR hydrogenation.Utilizing this catalyst support,we further investigate the size effects of Pt nanoparticles on DNR hydrogenation.Larger Pt catalysts demonstrate a preference for 4,6-diaminoresorcinol generation at(100)sites,whereas smaller Pt catalysts are more susceptible to electronic properties.The kinetics insights obtained from this study have the potential to pave the way for the development of more efficient catalysts for both CNT synthesis and DNR hydrogenation. 展开更多
关键词 kinetics Size effects Catalytic hydrogenation Active site
下载PDF
Particle aggregation and breakage kinetics in cemented paste backfill
16
作者 Liuhua Yang Hengwei Jia +4 位作者 Aixiang Wu Huazhe Jiao Xinming Chen Yunpeng Kou Mengmeng Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1965-1974,共10页
The macroscopic flow behavior and rheological properties of cemented paste backfill(CPB)are highly impacted by the inherent structure of the paste matrix.In this study,the effects of shear-induced forces and proportio... The macroscopic flow behavior and rheological properties of cemented paste backfill(CPB)are highly impacted by the inherent structure of the paste matrix.In this study,the effects of shear-induced forces and proportioning parameters on the microstructure of fresh CPB were studied.The size evolution and distribution of floc/agglomerate/particles of paste were monitored by focused beam reflection measuring(FBRM)technique,and the influencing factors of aggregation and breakage kinetics of CPB were discussed.The results indicate that influenced by both internal and external factors,the paste kinetics evolution covers the dynamic phase and the stable phase.Increasing the mass content or the cement-tailings ratio can accelerate aggregation kinetics,which is advantageous for the rise of average floc size.Besides,the admixture and high shear can improve breaking kinetics,which is beneficial to reduce the average floc size.The chord length resembles a normal distribution somewhat,with a peak value of approximate 20μm.The particle disaggregation con-stant(k_(2))is positively correlated with the agitation rate,and k_(2) is five orders of magnitude greater than the particle aggregation constant(k1).The kinetics model depicts the evolution law of particles over time quantitatively and provides a theoretical foundation for the micromechanics of complicated rheological behavior of paste. 展开更多
关键词 cemented paste backfill particle kinetics ADMIXTURE rheology
下载PDF
Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs
17
作者 Nan Liu Chen Hong +4 位作者 Xinchao Su Xing Jin Chen Jiang Yuqi Shi Bingkun Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1867-1882,共16页
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia... As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case. 展开更多
关键词 Axle-mounted train brake disc aerodynamic torque wind tunnel test numerical simulation
下载PDF
Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium-sulfur batteries
18
作者 Yinyu Xiang Liqiang Lu +4 位作者 Feng Yan Debarun Sengupta Petra Rudolf Ajay Giri Prakash Kottapalli Yutao Pei 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期40-55,共16页
The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the... The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries. 展开更多
关键词 CRYSTALLINITY electrochemical kinetics INTERLAYER lithium-sulfur batteries titanium nitride
下载PDF
Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus
19
作者 Se In Kim Woong-Ju Kim +1 位作者 Jin Gu Kang Dong-Wan Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期618-637,共20页
Doped two-dimensional(2D)materials hold significant promise for advancing many technologies,such as microelectronics,optoelectronics,and energy storage.Herein,n-type 2D oxidized Si nanosheets,namely n-type siloxene(n-... Doped two-dimensional(2D)materials hold significant promise for advancing many technologies,such as microelectronics,optoelectronics,and energy storage.Herein,n-type 2D oxidized Si nanosheets,namely n-type siloxene(n-SX),are employed as Li-ion battery anodes.Via thermal evaporation of sodium hypophosphite at 275℃,P atoms are effectively incorporated into siloxene(SX)without compromising its 2D layered morphology and unique Kautsky-type crystal structure.Further,selective nucleophilic substitution occurs,with only Si atoms being replaced by P atoms in the O_(3)≡Si-H tetrahedra.The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types:(i)P atoms residing in Si sites and(ii)H vacancies.The doping concentrations are varied by controlling the amount of precursors or their mean free paths.Even at 2000 mA g^(-1),the n-SX electrode with the optimized doping concentration(6.7×10^(19) atoms cm^(-3))delivers a capacity of 594 mAh g^(-1) with a 73%capacity retention after 500 cycles.These improvements originate from the enhanced kinetics of charge transport processes,including electronic conduction,charge transfer,and solid-state diffusion.The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage. 展开更多
关键词 Li-ion battery Two-dimensional N-type siloxene Doping mechanism kinetics
下载PDF
Thiourea crystal growth kinetics,mechanism and process optimization during cooling crystallization
20
作者 Zhongxiang Ding Wei Song +2 位作者 Tong Zhou Weihua Cui Changsong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期62-69,共8页
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me... In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process. 展开更多
关键词 THIOUREA CRYSTALLIZATION Growth kinetics Process optimization DIFFUSION Surface reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部