Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are e...Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.展开更多
Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional in...Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional inertia moment is an approximate analytic method for two-dimensional cross-section, which is not fully consistent with the actual situation, and do not consider the effects of diaphragm in bridge. In order to analyze accurately cable-stayed bridge, suspension bridge and other complex bridge structures based on beam element, the calculation method of section torsional inertia moment based on finite element method (FEM) is invented in this paper. Firstly, setting up local cantilever fine model with solid element or shell element and applying torsion on the end of cantilever. Secondly, calculating the torsion angle of cantilever by FEM method and then the torsional moment through equivalent beam method. Finally, the examples of the section torsional moment calculation of concrete model with solid element with diaphragm and steel girder box model with shell element with diaphragm are used to verify the calculation method, which is applied to the suspension bridge design and construction control special software SBNA developed by Research Institute of Highway Ministry of Transport. Taizhou Bridge under construction is one of the examples.展开更多
While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or in...While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.展开更多
根据构架在线路运行中的扭曲状态和标准JIS E 4207:2004《铁路车辆-转向架-转向架构架设计通则》中规定的构架扭转刚度测试方法提出改进的刚度测试方法,新的测试方法简单且实用性较强,误差有效地控制在7%之内。构架根据结构设计形式的...根据构架在线路运行中的扭曲状态和标准JIS E 4207:2004《铁路车辆-转向架-转向架构架设计通则》中规定的构架扭转刚度测试方法提出改进的刚度测试方法,新的测试方法简单且实用性较强,误差有效地控制在7%之内。构架根据结构设计形式的不同分为管梁型构架及箱梁型构架。利用新的扭转刚度测试方法分别对管梁型构架及箱梁型构架进行扭转刚度测试,同时理论分析两种类型构架扭转刚度不同的原因。利用ANSYS仿真分析软件对两种类型的转向架构架进行仿真分析,得出:构架扭转刚度的大小主要取决于测量的横截面积及横梁的结构形式,管梁型结构构架扭转刚度小于箱梁型结构构架的扭转刚度;在构架受扭转变形影响较大的区域,如横梁与侧梁的连接位置,由于箱梁型构架扭转模态频率较高,其动应力幅值较管梁型构架要小。展开更多
文摘Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金National Natural Science Foundation of China(No.50908211)Scientific Research Item from Ministry of Transport(No.200831822343)
文摘Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional inertia moment is an approximate analytic method for two-dimensional cross-section, which is not fully consistent with the actual situation, and do not consider the effects of diaphragm in bridge. In order to analyze accurately cable-stayed bridge, suspension bridge and other complex bridge structures based on beam element, the calculation method of section torsional inertia moment based on finite element method (FEM) is invented in this paper. Firstly, setting up local cantilever fine model with solid element or shell element and applying torsion on the end of cantilever. Secondly, calculating the torsion angle of cantilever by FEM method and then the torsional moment through equivalent beam method. Finally, the examples of the section torsional moment calculation of concrete model with solid element with diaphragm and steel girder box model with shell element with diaphragm are used to verify the calculation method, which is applied to the suspension bridge design and construction control special software SBNA developed by Research Institute of Highway Ministry of Transport. Taizhou Bridge under construction is one of the examples.
基金supported by the National Natural Science Foundation of China (Grant No. 50879048)"948" Project of the Ministry of Water Resources of China (Grant No. 201127)
文摘While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.
文摘根据构架在线路运行中的扭曲状态和标准JIS E 4207:2004《铁路车辆-转向架-转向架构架设计通则》中规定的构架扭转刚度测试方法提出改进的刚度测试方法,新的测试方法简单且实用性较强,误差有效地控制在7%之内。构架根据结构设计形式的不同分为管梁型构架及箱梁型构架。利用新的扭转刚度测试方法分别对管梁型构架及箱梁型构架进行扭转刚度测试,同时理论分析两种类型构架扭转刚度不同的原因。利用ANSYS仿真分析软件对两种类型的转向架构架进行仿真分析,得出:构架扭转刚度的大小主要取决于测量的横截面积及横梁的结构形式,管梁型结构构架扭转刚度小于箱梁型结构构架的扭转刚度;在构架受扭转变形影响较大的区域,如横梁与侧梁的连接位置,由于箱梁型构架扭转模态频率较高,其动应力幅值较管梁型构架要小。