期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Torsional effect of space structure in frequent earthquakes
1
作者 王秀丽 金恩平 《Journal of Chongqing University》 CAS 2011年第2期84-92,共9页
Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reve... Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reverse forms and features,we put forward a mechanical analysis model(flexibility layer model) and a calculation method using the response spectrum method and the weighted average method,and verified their validity and feasibility using case analysis.The result shows that the translation displacement change trend of the space structure is basically the same whether reverse exists in the supporting structure or not,but the supporting structure torsion has an effect on the displacement with a relative increase of 10%. 展开更多
关键词 frequent earthquake space structure supporting structure torsional effect flexibility layer model ECCENTRICITY
下载PDF
Effect of Torsion on Cisplatin-Induced DNA Condensation
2
作者 Bo Li Chao Ji +5 位作者 Xi-Ming Lu Yu-Ru Liu Wei Li Shuo-Xing Dou Hui Li Peng-Ye Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第11期90-94,共5页
We investigate the effect of torsion on DNA condensation with the covalently closed circular DNA as the torsionconstrained system, using an atomic force microscope. It is found that there are two stages in the DNA con... We investigate the effect of torsion on DNA condensation with the covalently closed circular DNA as the torsionconstrained system, using an atomic force microscope. It is found that there are two stages in the DNA condensation process under torsional constraint. At the early stage, the low torsion will accelerate DNA condensation by promoting the formation of micro-loops or intersection structures; while at the later stage, the increasing torsion will slow it down by preventing the crosslinking of cisplatin and DNA since the DNA molecule becomes more rigid. Our results show the important role of torsion in DNA condensation and sheds new light on the mechanism for DNA condensation. 展开更多
关键词 cccDNA Effect of torsion on Cisplatin-Induced DNA Condensation
下载PDF
Dynamic Characteristics of the Crankshaft System with Coupling Effect 被引量:1
3
作者 S.H. Zhang K. Jia 《Journal of Energy and Power Engineering》 2010年第5期18-26,共9页
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional... The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor. 展开更多
关键词 Coupling effect between torsional and axial vibration nonlinear dynamic model crankshaft system dynamic response.
下载PDF
Experimental Study of the Viscous Pump with a Helical Channel Rotor:Torsion Effect of the Channel
4
作者 Yasutaka HAYAMIZU Kyoji YAMAMOTO +3 位作者 Shinichiro YANASE Toru HYAKUTAKE Shinichi MORITA Shigeru OHTSUKA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第2期154-159,共6页
The viscous pump,which has a rotor with a helical square channel,is studied experimentally.The non-dimen-sional channel curvature is taken to be about 0.1.Three types of torsion of the channel are made to investigate ... The viscous pump,which has a rotor with a helical square channel,is studied experimentally.The non-dimen-sional channel curvature is taken to be about 0.1.Three types of torsion of the channel are made to investigate the torsion effect on the flow characteristics.We measure the flux through the channel at a constant rotor speed by changing the pressures at the entrance and exit of the pump.We also observe the secondary flow at a cross-section of the channel.Some of the results obtained are shown as follows:The friction factor along the channel to get the same flux is large for large channel torsion at a constant rotation,and becomes small when the favorable rotation of the rotor to the flow is applied.As for the secondary flow in a cross-section,there appear several types of vortex.When there is no rotation,the secondary flow is almost a symmetric two-vortex type for small flux as is the ordinary Dean vortex,but it changes to a four-vortex type when the flux is large.The secondary flow becomes asymmetric as the rotation is applied.We have unsteady flow patterns at large flux and rotation. 展开更多
关键词 Viscous Pump Helical Channel torsion Effect Secondary Flow Flow Visualization Dean Number Taylor Number
原文传递
Experimental Study of the Flow in Helical Circular Pipes:Torsion Effect on the Flow Velocity and Turbulence
5
作者 Yasutaka HAYAMIZU Kyoji YAMAMOTO +3 位作者 ShinichiroYANASE Toru HYAKUTAKE Toru SHINOHARA Shinichi MORITA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2008年第3期193-198,共6页
An objective of the present paper is to experimentally clarify the torsion effect on the flow in helical circular pipes. We have made six helical circular pipes having different pitches and common non-dimensional curv... An objective of the present paper is to experimentally clarify the torsion effect on the flow in helical circular pipes. We have made six helical circular pipes having different pitches and common non-dimensional curvature δ of about 0.1. The torsion parameter β0, which is defined by β0 = τ/(2δ)1/2 with non-dimensional torsion r, are taken to be 0.02, 0.45, 0.69, 1.01, 1.38 and 1.89 covering from small to very large pitch. The velocity distributions and the turbulence of the flow are measured using an X-type hot-wire anemometer in the range of the Reynolds number from 200 to 20000. The results obtained are summarized as follows: The mean secondary flow pattern in a cross section of the pipe changes from an ordinary twin-vortex type as is seen in a curved pipe without torsion (toroidal pipe) to a single vortex type after one of the twin-vortex gradually disappears as β0 increases. The circulation direction of the single vortex is the same as the direction of torsion of the pipe. The mean velocity distribution of the axial flow is similar to that of the toroidal pipe at small β0, but changes its shape as β0 increases, and attains the shape similar to that in a straight circular pipe when ,β0 = 1.89. It is also found that the critical Reynolds number, at which the flow shows a marginal behavior to turbulence, decreases as ,β0 increases for small ,β0, and then increases after taking a minimum at ,β0 ≈ 1.4 as ,β0 increases. The minimum of the critical Reynolds number experimentally obtained is about 400 at ,β0 ≈ 1.4. 展开更多
关键词 Helical Circular Pipe torsion Effect Critical Reynolds Number TURBULENCE
原文传递
Torsional wave in a circular micro-tube with clogging attached to the inner surface
6
作者 Limei Xu Hui Fan Yufeng Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第3期299-305,共7页
In the present paper, we study the torsional wave propagation along a micro-tube with clog- ging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic memb... In the present paper, we study the torsional wave propagation along a micro-tube with clog- ging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic membrane" which is described by the so-called surface elasticity. A power-series solution is particularly developed for the lowest order of wave propagation. The dispersion diagram of the lowest-order wave is numerically presented with the surface (clogging) effect. 展开更多
关键词 torsional wave Wave propagation Surface effect Micro-tubes with clogging Elastic membrane
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部