The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D ele...The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the perio...This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.展开更多
Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a ...Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a CT injector for the EAST tokamak,EAST-CTI,was developed and platform-tested.In the first round of experiments conducted with low parameter settings,the maximum velocity and mass of the CT plasma were 150 km·s^(-1)and 90μg,respectively.However,the parameters obtained by EAST-CTI were still very low and were far from the requirements of a device such as EAST that has a strong magnetic field.In future,we plan to solve the spark problem that EAST-CTI currently encounters(that mainly hinders the further development of experiments)through engineering methods,and use greater power to obtain a more stable and suitable CT plasma for EAST.展开更多
基金performed under the auspices of National Natural Science Foundation of China(No.11605244)supported by the High-End Talents Program of Hebei Province,Innovative Approaches towards Development of CarbonFree Clean Fusion Energy(No.2021HBQZYCSB006)。
文摘The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
文摘This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.
基金support of the National Key Research and Development Program of China(Nos.2017YFE0300501,2017YFE0300500)Institute of Energy,Hefei Comprehensive National Science Center(Nos.21KZS202,19KZS205)+3 种基金University Synergy Innovation Program of Anhui Province(Nos.GXXT-2021-014,GXXT-2021-029)National Natural Science Foundation of China(No.11905143)the Fundamental Research Funds for the Central Universities of China(No.JZ2022HGTB0302)supported in part by the Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE008)。
文摘Compact torus(CT)injection is a highly promising technique for the central fueling of future reactor-grade fusion devices since it features extremely high injection velocity and relatively high plasma mass.Recently,a CT injector for the EAST tokamak,EAST-CTI,was developed and platform-tested.In the first round of experiments conducted with low parameter settings,the maximum velocity and mass of the CT plasma were 150 km·s^(-1)and 90μg,respectively.However,the parameters obtained by EAST-CTI were still very low and were far from the requirements of a device such as EAST that has a strong magnetic field.In future,we plan to solve the spark problem that EAST-CTI currently encounters(that mainly hinders the further development of experiments)through engineering methods,and use greater power to obtain a more stable and suitable CT plasma for EAST.