The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that...The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that every square of an n × n board is attacked? Beginning in 2005 with Amirabadi, Burchett, and Hedetniemi [2] [3], work on this problem, and two other related problems, has seen progress. Bounds have been given for the values of all three domination parameters on the queen’s graph. In this paper, formations of queens are given that provide new bounds for the values of total, paired, and connected domination on the queen’s graph, denoted , , and respectively. For any n × n board size, the new bound of is arrived at, along with the separate bounds of , for with , and , for with .展开更多
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of...We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph.展开更多
文摘The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that every square of an n × n board is attacked? Beginning in 2005 with Amirabadi, Burchett, and Hedetniemi [2] [3], work on this problem, and two other related problems, has seen progress. Bounds have been given for the values of all three domination parameters on the queen’s graph. In this paper, formations of queens are given that provide new bounds for the values of total, paired, and connected domination on the queen’s graph, denoted , , and respectively. For any n × n board size, the new bound of is arrived at, along with the separate bounds of , for with , and , for with .
文摘We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph.