Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn...Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.展开更多
Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and M...Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and Materials: The DFR-TSET combined the Stanford 6-field and McGill rotational methods. Dual 6 MeV electron beams in high dose total skin electron mode were used for DFR-TSET on a commercial linac. Beam profiles and dosimetric properties were measured using solid phantoms. The dose rate at expanded source-to-surface distance (SSD) was a combination of static rate and rotational rate. In vivo dosimetry of patient skin was performed on patients’ skin using film, metal oxide semiconductor field-effect transistors (MOSFET), and optically stimulated luminescent dosimeters (OSLD). Results: Dual field rotational total skin electron therapy exhibited good (≤±10%) uniformity in the beam profiles in the vertical direction at an extended SSD of 332 cm with a gantry angulation of ±20˚ deviated from the horizontal direction. In-vivo measurements confirmed acceptable uniformity of the patients’ total body surfaces and revealed anatomically self-blocked or shielded areas where underdosing occurred. Conclusions: The clinical implementation of DFR-TSET effectively utilizes the special mode on a linac. This technique provides short beam-on times, uniform dose distribution, large treatment field, and reduced dose of x-ray contamination to the patients. In-vivo measurements indicate satisfactory delivery and dose uniformity of the prescribed dose. Electron boost fields are recommended at normal SSDs to address underdosed areas.展开更多
The Uranium-238 (<sup>238</sup>U), Thorium-232 (<sup>232</sup>Th) families and Potassium-40 (<sup>40</sup>K) are of terrestrial origin and contribute generally to an individual’s e...The Uranium-238 (<sup>238</sup>U), Thorium-232 (<sup>232</sup>Th) families and Potassium-40 (<sup>40</sup>K) are of terrestrial origin and contribute generally to an individual’s external exposure through our presence in this environment. They also contribute to the internal exposure through the ingestion of products and beverages such as water that are close to the earth. The aim of this work is to determine the committed effective dose or Total Indicative Dose (TID) due to gamma radioactivity of the borehole water from the Nord Riviera (NR) well field operated by the Côte d’Ivoire Water Distribution Company (SODECI) for the supply of drinking water to part of the population of Abidjan. In addition, the populations, with their habits, could use these borehole waters directly as drinking water. To this end, water samples from the seven (07) functional boreholes were collected and analyzed on a gamma spectrometry chain, equipped with an HPGe detector in the laboratory of the Radiation Protection Institute (RPI) of the GHANA Atomic Energy Commission (GAEC). The results of the specific activities of <sup>238</sup>U, <sup>232</sup>Th and <sup>40</sup>K obtained were transcribed into TID. As the natural radioactivity of the borehole water is high [1], the TIDs calculated from the activity results of the natural radionuclides<sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K vary for the seven boreholes from 0.150 to 0.166 mSv/yr with an average of 0.161 ± 0.034 mSv/yr. The TID of the control tower, where the borehole water is mixed and treated for household use, is equal to 0.136 ± 0.03 mSv/yr. The TIDs obtained are therefore all slightly greater than the WHO reference dose value of 0.1 mSv/yr. But all remain below the UNSCEAR reference dose of 0.29 mSv/yr.展开更多
The total electric field(TEF) at ground level induced by high-voltage direct current(HVDC) overhead transmission lines is one of the important indexes for evaluating the lines' electromagnetic environment.Based on...The total electric field(TEF) at ground level induced by high-voltage direct current(HVDC) overhead transmission lines is one of the important indexes for evaluating the lines' electromagnetic environment.Based on analyzing the existing TEF sensors and the measurement principle of ion-current density,the influence from ions on TEF measurements is quantitively studied.The results show that the ions generated by the corona from a HVDC transmission line in operation cause errors in the measurement of TEF.This error is determined through analyzing the component of total measuring current on the filed mill's sensing electrode: if no appropriate approach taken,the maximum measurement error reaches up to 4.3%.Furthermore,a method that can eliminate such error,and hence improve the accuracy of TEF sensors is designed.展开更多
With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the c...With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.展开更多
October oil field is one of the largest hydrocarbon-bearing fields which produces oil from the sand section of the Lower Miocene Asl Formation. Two marl (Asl Marl) and shale (Hawara Formation) sections of possible sou...October oil field is one of the largest hydrocarbon-bearing fields which produces oil from the sand section of the Lower Miocene Asl Formation. Two marl (Asl Marl) and shale (Hawara Formation) sections of possible source enrichment are detected above and below this oil sand section, respectively. This study aims to identify the content of the total organic carbon based on the density log and a combination technique of the resistivity and porosity logs (Δlog R Technique). The available geochemical analyses are used to calibrate the constants of the TOC and the level of maturity (LOM) used in the (Δlog R Technique). The geochemical-based LOM is found as 9.0 and the calibrated constants of the Asl Marl and Hawara Formation are found as 11.68, 3.88 and 8.77, 2.80, respectively. Fair to good TOC% content values (0.88 to 1.85) were recorded for Asl Marl section in the majority of the studied wells, while less than 0.5% is recorded for the Hawara Formation. The lateral distribution maps show that most of the TOC% enrichments are concentrated at central and eastern parts of the study area, providing a good source for the hydrocarbons encountered in the underlying Asl Sand section.展开更多
本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型...本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型GFET,顶栅型GFET的辐射损伤更加严重;尺寸对GFET器件的总剂量效应决定于器件结构;200μm×200μm尺寸的顶栅型GFET损伤最严重,而背栅型GFET是50μm×50μm尺寸的器件损伤最严重.研究表明:对于顶栅型GFET,辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是V_(Dirac)和μ降低的主要原因.背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响,还受到石墨烯表面的氧吸附的影响.在此基础上,结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真.相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.展开更多
基金funded by a science and technology project of State Grid Corporation of China“Comparative Analysis of Long-Term Measurement and Prediction of the Ground Synthetic Electric Field of±800 kV DC Transmission Line”(GYW11201907738)Paulo R.F.Rocha acknowledges the support and funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program(Grant Agreement No.947897).
文摘Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
文摘Purpose: To present a protocol of a dual-field rotational (DFR) total skin electron therapy (TSET) and to provide an assessment of clinical implementation, dosimetry properties, and skin dose evaluation. Methods and Materials: The DFR-TSET combined the Stanford 6-field and McGill rotational methods. Dual 6 MeV electron beams in high dose total skin electron mode were used for DFR-TSET on a commercial linac. Beam profiles and dosimetric properties were measured using solid phantoms. The dose rate at expanded source-to-surface distance (SSD) was a combination of static rate and rotational rate. In vivo dosimetry of patient skin was performed on patients’ skin using film, metal oxide semiconductor field-effect transistors (MOSFET), and optically stimulated luminescent dosimeters (OSLD). Results: Dual field rotational total skin electron therapy exhibited good (≤±10%) uniformity in the beam profiles in the vertical direction at an extended SSD of 332 cm with a gantry angulation of ±20˚ deviated from the horizontal direction. In-vivo measurements confirmed acceptable uniformity of the patients’ total body surfaces and revealed anatomically self-blocked or shielded areas where underdosing occurred. Conclusions: The clinical implementation of DFR-TSET effectively utilizes the special mode on a linac. This technique provides short beam-on times, uniform dose distribution, large treatment field, and reduced dose of x-ray contamination to the patients. In-vivo measurements indicate satisfactory delivery and dose uniformity of the prescribed dose. Electron boost fields are recommended at normal SSDs to address underdosed areas.
文摘The Uranium-238 (<sup>238</sup>U), Thorium-232 (<sup>232</sup>Th) families and Potassium-40 (<sup>40</sup>K) are of terrestrial origin and contribute generally to an individual’s external exposure through our presence in this environment. They also contribute to the internal exposure through the ingestion of products and beverages such as water that are close to the earth. The aim of this work is to determine the committed effective dose or Total Indicative Dose (TID) due to gamma radioactivity of the borehole water from the Nord Riviera (NR) well field operated by the Côte d’Ivoire Water Distribution Company (SODECI) for the supply of drinking water to part of the population of Abidjan. In addition, the populations, with their habits, could use these borehole waters directly as drinking water. To this end, water samples from the seven (07) functional boreholes were collected and analyzed on a gamma spectrometry chain, equipped with an HPGe detector in the laboratory of the Radiation Protection Institute (RPI) of the GHANA Atomic Energy Commission (GAEC). The results of the specific activities of <sup>238</sup>U, <sup>232</sup>Th and <sup>40</sup>K obtained were transcribed into TID. As the natural radioactivity of the borehole water is high [1], the TIDs calculated from the activity results of the natural radionuclides<sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K vary for the seven boreholes from 0.150 to 0.166 mSv/yr with an average of 0.161 ± 0.034 mSv/yr. The TID of the control tower, where the borehole water is mixed and treated for household use, is equal to 0.136 ± 0.03 mSv/yr. The TIDs obtained are therefore all slightly greater than the WHO reference dose value of 0.1 mSv/yr. But all remain below the UNSCEAR reference dose of 0.29 mSv/yr.
基金Project supported by National Natural Science Foundation of China (61273165 51207005).
文摘The total electric field(TEF) at ground level induced by high-voltage direct current(HVDC) overhead transmission lines is one of the important indexes for evaluating the lines' electromagnetic environment.Based on analyzing the existing TEF sensors and the measurement principle of ion-current density,the influence from ions on TEF measurements is quantitively studied.The results show that the ions generated by the corona from a HVDC transmission line in operation cause errors in the measurement of TEF.This error is determined through analyzing the component of total measuring current on the filed mill's sensing electrode: if no appropriate approach taken,the maximum measurement error reaches up to 4.3%.Furthermore,a method that can eliminate such error,and hence improve the accuracy of TEF sensors is designed.
文摘With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.
文摘October oil field is one of the largest hydrocarbon-bearing fields which produces oil from the sand section of the Lower Miocene Asl Formation. Two marl (Asl Marl) and shale (Hawara Formation) sections of possible source enrichment are detected above and below this oil sand section, respectively. This study aims to identify the content of the total organic carbon based on the density log and a combination technique of the resistivity and porosity logs (Δlog R Technique). The available geochemical analyses are used to calibrate the constants of the TOC and the level of maturity (LOM) used in the (Δlog R Technique). The geochemical-based LOM is found as 9.0 and the calibrated constants of the Asl Marl and Hawara Formation are found as 11.68, 3.88 and 8.77, 2.80, respectively. Fair to good TOC% content values (0.88 to 1.85) were recorded for Asl Marl section in the majority of the studied wells, while less than 0.5% is recorded for the Hawara Formation. The lateral distribution maps show that most of the TOC% enrichments are concentrated at central and eastern parts of the study area, providing a good source for the hydrocarbons encountered in the underlying Asl Sand section.
文摘本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型GFET,顶栅型GFET的辐射损伤更加严重;尺寸对GFET器件的总剂量效应决定于器件结构;200μm×200μm尺寸的顶栅型GFET损伤最严重,而背栅型GFET是50μm×50μm尺寸的器件损伤最严重.研究表明:对于顶栅型GFET,辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是V_(Dirac)和μ降低的主要原因.背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响,还受到石墨烯表面的氧吸附的影响.在此基础上,结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真.相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.