Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in tw...Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in two-dimensional(2D)nanospace.As an example,we study the reflectance of few-layered black phosphorus(BP)in the total internal reflection(TIR)mode in detail.We demonstrate that its optical anisotropy can be changed on a large scale by varying the incident angles,polarization states,and the in-plane rotation angles of the BP samples.Theoretical analysis indicates that the phenomena observed are common to all the atom-thick biaxial crystals,so these conclusions can be widely applied to other anisotropic 2D materials.This research furthers the current understanding of the properties of BP more comprehensively,and provides guidance for developing new optoelectronic applications,especially when BP and other atom-thick biaxial crystals are integrated with TIR devices.展开更多
A new type of optical fiber is presented here. It consists of a coaxial optical fiber, bounded by dielectric, multilayer and omnidirectional reflecting mirrors. Jones matrix method is used to analyze the influence of ...A new type of optical fiber is presented here. It consists of a coaxial optical fiber, bounded by dielectric, multilayer and omnidirectional reflecting mirrors. Jones matrix method is used to analyze the influence of the layer number of one Dimensional (1D) photonic crystals on their reflectivity. The numerical results show that this type of fiber can be used to guide light around sharp bends whose radius of curvature can be as small as the wavelength of light without significant scattering losses.展开更多
基金supported by the K. C. Wong Education Foundation (GJTD-2018-08)the Natural Science Foundation of China (NSFC) (Grants 11804334, 51705192)+1 种基金the China Postdoctoral Science Foundation (2017M611325)the National Postdoctoral Program for Innovative Talents (BX201600064)
文摘Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in two-dimensional(2D)nanospace.As an example,we study the reflectance of few-layered black phosphorus(BP)in the total internal reflection(TIR)mode in detail.We demonstrate that its optical anisotropy can be changed on a large scale by varying the incident angles,polarization states,and the in-plane rotation angles of the BP samples.Theoretical analysis indicates that the phenomena observed are common to all the atom-thick biaxial crystals,so these conclusions can be widely applied to other anisotropic 2D materials.This research furthers the current understanding of the properties of BP more comprehensively,and provides guidance for developing new optoelectronic applications,especially when BP and other atom-thick biaxial crystals are integrated with TIR devices.
文摘A new type of optical fiber is presented here. It consists of a coaxial optical fiber, bounded by dielectric, multilayer and omnidirectional reflecting mirrors. Jones matrix method is used to analyze the influence of the layer number of one Dimensional (1D) photonic crystals on their reflectivity. The numerical results show that this type of fiber can be used to guide light around sharp bends whose radius of curvature can be as small as the wavelength of light without significant scattering losses.