在建立了实封闭域F上复元素域C与四元素体H后得到了:(1)全阵代数F2n中有子代数同构于C,全阵代数F4n中有子代数同构于H;(2)F上代数扩张体只有F、C和H;(3)设F是域K里上维数有限的真子域,则F是实封闭的K是代数闭域且K=F((-1)~(1/2));(4)设...在建立了实封闭域F上复元素域C与四元素体H后得到了:(1)全阵代数F2n中有子代数同构于C,全阵代数F4n中有子代数同构于H;(2)F上代数扩张体只有F、C和H;(3)设F是域K里上维数有限的真子域,则F是实封闭的K是代数闭域且K=F((-1)~(1/2));(4)设A是F上的有限维代数,①若A是可除代数,则A同构于F、C或H,②若A是中心可除代数,则A同构于F或H,③若A是单代数,则A同构于全阵代数Fn、Cn与Hn中之一,④若A是中心单代数,则A同构于全阵代数Fn或Hn,⑤若A没有非零幂零理想,则A=sum Mni from i=1 to l,其中Mni∈{Fni,Cni,Hni},i=1,2,…,l。展开更多
Gravier et al. established bounds on the size of a minimal totally dominant subset for graphs Pk□Pm. This paper offers an alternative calculation, based on the following lemma: Let so k≥3 and r≥2. Let H be an r-reg...Gravier et al. established bounds on the size of a minimal totally dominant subset for graphs Pk□Pm. This paper offers an alternative calculation, based on the following lemma: Let so k≥3 and r≥2. Let H be an r-regular finite graph, and put G=Pk□H. 1) If a perfect totally dominant subset exists for G, then it is minimal;2) If r>2 and a perfect totally dominant subset exists for G, then every minimal totally dominant subset of G must be perfect. Perfect dominant subsets exist for Pk□ Cn when k and n satisfy specific modular conditions. Bounds for rt(Pk□Pm) , for all k,m follow easily from this lemma. Note: The analogue to this result, in which we replace “totally dominant” by simply “dominant”, is also true.展开更多
文摘在建立了实封闭域F上复元素域C与四元素体H后得到了:(1)全阵代数F2n中有子代数同构于C,全阵代数F4n中有子代数同构于H;(2)F上代数扩张体只有F、C和H;(3)设F是域K里上维数有限的真子域,则F是实封闭的K是代数闭域且K=F((-1)~(1/2));(4)设A是F上的有限维代数,①若A是可除代数,则A同构于F、C或H,②若A是中心可除代数,则A同构于F或H,③若A是单代数,则A同构于全阵代数Fn、Cn与Hn中之一,④若A是中心单代数,则A同构于全阵代数Fn或Hn,⑤若A没有非零幂零理想,则A=sum Mni from i=1 to l,其中Mni∈{Fni,Cni,Hni},i=1,2,…,l。
文摘Gravier et al. established bounds on the size of a minimal totally dominant subset for graphs Pk□Pm. This paper offers an alternative calculation, based on the following lemma: Let so k≥3 and r≥2. Let H be an r-regular finite graph, and put G=Pk□H. 1) If a perfect totally dominant subset exists for G, then it is minimal;2) If r>2 and a perfect totally dominant subset exists for G, then every minimal totally dominant subset of G must be perfect. Perfect dominant subsets exist for Pk□ Cn when k and n satisfy specific modular conditions. Bounds for rt(Pk□Pm) , for all k,m follow easily from this lemma. Note: The analogue to this result, in which we replace “totally dominant” by simply “dominant”, is also true.