For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be ev...For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.展开更多
To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shan...To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54 279.792 tons per year in 2010. Conclusion The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.展开更多
The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollu...The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.展开更多
This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the tota...This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[展开更多
基金supported by the Key Project of Chinese Ministry of Education(No.108177)the National Natural Science Foundation of China(No.50679049)
文摘For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
文摘To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54 279.792 tons per year in 2010. Conclusion The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.
文摘The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.
文摘This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[