The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling alg...The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.展开更多
We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leadin...We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.展开更多
In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup&...In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.展开更多
This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
文摘The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.
文摘We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.
文摘In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.