Flexible ionotronic devices have great potential to revolutionize epidermal electronics.However,the lack of breathability in most ionotronic devices is a significance barrier to practical application.Herein,a breathab...Flexible ionotronic devices have great potential to revolutionize epidermal electronics.However,the lack of breathability in most ionotronic devices is a significance barrier to practical application.Herein,a breathable kirigami-shaped ionotronic e-textile with two functions of sensing(touch and strain)is designed,by integrating silk fabric and kirigami-shaped ionic hydrogel.The kirigami-shaped ionic hydrogel,combined with fluffy silk fabric,allows the ionotronic e-textile to achieve excellent breathability and comfortability.Furthermore,the fabricated ionotronic e-textile can precisely perform the function of touch sensing and strain perception.For touch-sensing,the ionotronic e-textile can detect the position of finger touching point with a fast response time(3 ms)based on the interruption of the ion field.For strain sensing,large workable strain range(>100%),inconspicuous drift(<0.78%)and long-term stability(>10,000 cycles)is demonstrated.On the proof of concept,a fabric keyboard and game controlling sleeve have been designed to display touch and strain sensing functions.The ionotronic e-textile break through the bottlenecks of traditional wearable ionotronic devices,suggesting a great promising application in future wearable epidermal electronics.展开更多
基金This work was supported by the Shandong Province Key Research and Development Plan(2019JZZY010335,2019JZZY010340)Anhui Province Special Science and Technology Project(201903a05020028)Shandong Provincial Universities Youth Innovation Technology Plan Team(2020KJA013).
文摘Flexible ionotronic devices have great potential to revolutionize epidermal electronics.However,the lack of breathability in most ionotronic devices is a significance barrier to practical application.Herein,a breathable kirigami-shaped ionotronic e-textile with two functions of sensing(touch and strain)is designed,by integrating silk fabric and kirigami-shaped ionic hydrogel.The kirigami-shaped ionic hydrogel,combined with fluffy silk fabric,allows the ionotronic e-textile to achieve excellent breathability and comfortability.Furthermore,the fabricated ionotronic e-textile can precisely perform the function of touch sensing and strain perception.For touch-sensing,the ionotronic e-textile can detect the position of finger touching point with a fast response time(3 ms)based on the interruption of the ion field.For strain sensing,large workable strain range(>100%),inconspicuous drift(<0.78%)and long-term stability(>10,000 cycles)is demonstrated.On the proof of concept,a fabric keyboard and game controlling sleeve have been designed to display touch and strain sensing functions.The ionotronic e-textile break through the bottlenecks of traditional wearable ionotronic devices,suggesting a great promising application in future wearable epidermal electronics.