A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independentl...A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.展开更多
An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error....An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error. The receiver is fabricated in a 0.18μm CMOS process. Measurements show that the IQ phase error can be calibrated within 1°,which satisfies the system requirement.展开更多
A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensor...A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.展开更多
In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,lea...In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,leading to inaccurate system parameters and affectingmeasurement accuracy.This paper proposes a method for solving the system parameters of the fringe projection profilometry system,and the spatial position of the camera and projector can be adjusted in accordance with the obtained calibration parameters.The steps are as follows:First,in accordance with the conversion relationship of the coordinate system in the calibration process,the calculation formula of the vertical distance from the camera light center to the reference plane and the calculation formula of the distance between the projector and the camera light center are given respectively.Secondly,according to the projector calibration principle,the position of the projector light axis perpendicular to the reference plane is gained by comparing the parallel relationship between the reference plane coordinate system and the projector coordinate system’s Z-axis.Then,in order to fulfill the position restriction that the line between the projector light center and the camera light center must be parallel to the reference plane,the camera’s spatial location is adjusted so that the vertical distance between it and the reference plane tends to that between the projector light center and the reference plane.And finally,the three-dimensional(3D)reconstruction of the target object can be finished using the phase height model’s system parameters once the aforementioned position limitations are put into practice.Experimental results demonstrate that the method improves the measurement accuracy,and verifies that it is effective and available in 3D shape measurement.展开更多
For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in...For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.展开更多
With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise en...With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.展开更多
With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of ...With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.展开更多
A simple and convenient pressure calibration method is developed for a newly designed portable wide-access 'panoramic' cell. This cell is adapted to angle-dispersive-mode high-pressure in situ neutron diffraction of...A simple and convenient pressure calibration method is developed for a newly designed portable wide-access 'panoramic' cell. This cell is adapted to angle-dispersive-mode high-pressure in situ neutron diffraction of reactor neutron sources. This pressure calibration method has established a relationship between the cell pressure and the anvil displace- ment (gasket compression) based on the fixed-point calibration technique. By employing TiZr gasket with a thickness of 3 mm and WC anvil with a culet of 4 mm diameter, the average anvil displacements are 1.31 mm and 2.22 mm for Bi phase transitions (2.55 GPa and 7.7 GPa), and 1.85 mm for Ba phase transitions (5.5 GPa), respectively. In this pressure range, the pressure increases quickly with decreasing gasket thickness, and undergoes a linear increase with the anvil displacement. By extrapolating the calibration curve, the cell pressure will achieve 10 GPa when the anvil displacement is around 2.5 ram.展开更多
A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system contr...A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system control parts. In the proposed AFC block, both analog and digital modes were designed to complete the AFC process. In analog mode, the analog part sampled and detected the charge pump output tuning voltage, which would give the indicator to digital part to adjust the voltage control oscillator(VCO) capacitor bank. In digital mode, the digital part counted the phase lock loop(PLL) divided clock to judge whether VCO frequency was fast or slow. The analog and digital modes completed the auto frequency calibration function independently by internal switch. By designing a special switching algorithm, the switch of the digital and analog mode could be realized anytime during the lock and unlock detecting process for faster and more stable locking. This chip is fabricated in 0.13 μm RF complementary metal oxide semiconductor(CMOS) process, and the VCO supports the frequency range from 2.7 to 4.0 GHz. Tested 3.96 GHz frequency phase noise is -90 d Bc/Hz@100 k Hz frequency offset and -120 d Bc/Hz@1 MHz frequency offset. By using the analog mode in lock detection and digital mode in unlock detection, tested AFC time is less than 9 μs and the total PLL lock time is less than 19 μs. The SoC acquisition and tracking sensitivity are about-142 d Bm and-155 d Bm, respectively. The area of the proposed PLL is 0.35 mm^2 and the total SoC area is about 9.6 mm^2.展开更多
The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time s...The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.展开更多
提出了在等电位工作状态下校准多元感应分流器(multiple inductive current divider,MICD)的1种方法。在校准装置中加入由跟随器和电阻组成的I/V变换器,以使MICD各支路间的电流比例与其工作状态保持一致;用参考电流互感器(CT)提供独立...提出了在等电位工作状态下校准多元感应分流器(multiple inductive current divider,MICD)的1种方法。在校准装置中加入由跟随器和电阻组成的I/V变换器,以使MICD各支路间的电流比例与其工作状态保持一致;用参考电流互感器(CT)提供独立的参考电流,以避免影响支路电流的比例关系。在20、55、400 Hz及1 kHz下对11支路MICD校准所得10:1电流比例的比值差合成标准不确定度优于0.2μA/A,相位差合成标准不确定度优于1.5μrad。展开更多
文摘A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.
文摘An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error. The receiver is fabricated in a 0.18μm CMOS process. Measurements show that the IQ phase error can be calibrated within 1°,which satisfies the system requirement.
文摘A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.
基金This work described in this paper is supported by Foundation of Jilin Province Department of Science and Technology under Grant YDZJ202201ZYTS531。
文摘In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,leading to inaccurate system parameters and affectingmeasurement accuracy.This paper proposes a method for solving the system parameters of the fringe projection profilometry system,and the spatial position of the camera and projector can be adjusted in accordance with the obtained calibration parameters.The steps are as follows:First,in accordance with the conversion relationship of the coordinate system in the calibration process,the calculation formula of the vertical distance from the camera light center to the reference plane and the calculation formula of the distance between the projector and the camera light center are given respectively.Secondly,according to the projector calibration principle,the position of the projector light axis perpendicular to the reference plane is gained by comparing the parallel relationship between the reference plane coordinate system and the projector coordinate system’s Z-axis.Then,in order to fulfill the position restriction that the line between the projector light center and the camera light center must be parallel to the reference plane,the camera’s spatial location is adjusted so that the vertical distance between it and the reference plane tends to that between the projector light center and the reference plane.And finally,the three-dimensional(3D)reconstruction of the target object can be finished using the phase height model’s system parameters once the aforementioned position limitations are put into practice.Experimental results demonstrate that the method improves the measurement accuracy,and verifies that it is effective and available in 3D shape measurement.
基金supported by the NSFC(Joint Foundation of NSFC&Fundamental Research for General Purpose Technologies)under Grant U1636125
文摘For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.
文摘With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0305200)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2018B030329001 and 2018B030325001)the National Natural Science Foundation of China(Grant No.61974168)。
文摘With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.
基金supported by the National Natural Science Foundation of China(Grant Nos.91126001,11105128,and 51231002)
文摘A simple and convenient pressure calibration method is developed for a newly designed portable wide-access 'panoramic' cell. This cell is adapted to angle-dispersive-mode high-pressure in situ neutron diffraction of reactor neutron sources. This pressure calibration method has established a relationship between the cell pressure and the anvil displace- ment (gasket compression) based on the fixed-point calibration technique. By employing TiZr gasket with a thickness of 3 mm and WC anvil with a culet of 4 mm diameter, the average anvil displacements are 1.31 mm and 2.22 mm for Bi phase transitions (2.55 GPa and 7.7 GPa), and 1.85 mm for Ba phase transitions (5.5 GPa), respectively. In this pressure range, the pressure increases quickly with decreasing gasket thickness, and undergoes a linear increase with the anvil displacement. By extrapolating the calibration curve, the cell pressure will achieve 10 GPa when the anvil displacement is around 2.5 ram.
基金Project(2011912004)supported by the Major Program of the Economic & Information Commission Program of Guangdong Province,ChinaProjects(2011B010700065,2011A090200106)supported by the Major Program of the Department of Science and Technology of Guangdong Province,China
文摘A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system control parts. In the proposed AFC block, both analog and digital modes were designed to complete the AFC process. In analog mode, the analog part sampled and detected the charge pump output tuning voltage, which would give the indicator to digital part to adjust the voltage control oscillator(VCO) capacitor bank. In digital mode, the digital part counted the phase lock loop(PLL) divided clock to judge whether VCO frequency was fast or slow. The analog and digital modes completed the auto frequency calibration function independently by internal switch. By designing a special switching algorithm, the switch of the digital and analog mode could be realized anytime during the lock and unlock detecting process for faster and more stable locking. This chip is fabricated in 0.13 μm RF complementary metal oxide semiconductor(CMOS) process, and the VCO supports the frequency range from 2.7 to 4.0 GHz. Tested 3.96 GHz frequency phase noise is -90 d Bc/Hz@100 k Hz frequency offset and -120 d Bc/Hz@1 MHz frequency offset. By using the analog mode in lock detection and digital mode in unlock detection, tested AFC time is less than 9 μs and the total PLL lock time is less than 19 μs. The SoC acquisition and tracking sensitivity are about-142 d Bm and-155 d Bm, respectively. The area of the proposed PLL is 0.35 mm^2 and the total SoC area is about 9.6 mm^2.
文摘The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.