In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.A...In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.展开更多
Among the promising application of autonomous surface vessels(ASVs)is the utilization of multiple autonomous tugs for manipulating a floating object such as an oil platform,a broken ship,or a ship in port areas.Consid...Among the promising application of autonomous surface vessels(ASVs)is the utilization of multiple autonomous tugs for manipulating a floating object such as an oil platform,a broken ship,or a ship in port areas.Considering the real conditions and operations of maritime practice,this paper proposes a multi-agent control algorithm to manipulate a ship to a desired position with a desired heading and velocity under the environmental disturbances.The control architecture consists of a supervisory controller in the higher layer and tug controllers in the lower layer.The supervisory controller allocates the towing forces and angles between the tugs and the ship by minimizing the error in the position and velocity of the ship.The weight coefficients in the cost function are designed to be adaptive to guarantee that the towing system functions well under environmental disturbances,and to enhance the efficiency of the towing system.The tug controller provides the forces to tow the ship and tracks the reference trajectory that is computed online based on the towing angles calculated by the supervisory controller.Simulation results show that the proposed algorithm can make the two autonomous tugs cooperatively tow a ship to a desired position with a desired heading and velocity under the(even harsh)environmental disturbances.展开更多
The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array i...The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.展开更多
基金Project supported by the National Defense Basic Science Research Program,China(Grant No.JCKY2016607C009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2018025)。
文摘In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.
基金supported by the China Scholarship Council(201806950080)the Researchlab Autonomous Shipping(RAS)of Delft University of Technology,and the INTERREG North Sea Region Grant“AVATAR”funded by the European Regional Development Fund.
文摘Among the promising application of autonomous surface vessels(ASVs)is the utilization of multiple autonomous tugs for manipulating a floating object such as an oil platform,a broken ship,or a ship in port areas.Considering the real conditions and operations of maritime practice,this paper proposes a multi-agent control algorithm to manipulate a ship to a desired position with a desired heading and velocity under the environmental disturbances.The control architecture consists of a supervisory controller in the higher layer and tug controllers in the lower layer.The supervisory controller allocates the towing forces and angles between the tugs and the ship by minimizing the error in the position and velocity of the ship.The weight coefficients in the cost function are designed to be adaptive to guarantee that the towing system functions well under environmental disturbances,and to enhance the efficiency of the towing system.The tug controller provides the forces to tow the ship and tracks the reference trajectory that is computed online based on the towing angles calculated by the supervisory controller.Simulation results show that the proposed algorithm can make the two autonomous tugs cooperatively tow a ship to a desired position with a desired heading and velocity under the(even harsh)environmental disturbances.
文摘The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.