Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the...Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems.展开更多
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO ...The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.展开更多
The probability distribution function of n random elements subjected to the flexible boundary condition is derived. The probability density is a descending curve and converges to a delta function as n tends to infinit...The probability distribution function of n random elements subjected to the flexible boundary condition is derived. The probability density is a descending curve and converges to a delta function as n tends to infinity. The distribution of the minimum value is discussed in context of ordered statistics.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
The penalty function method is one basic method for solving constrained nonlinear programming, in which simple smooth exact penalty functions draw much attention for their simpleness and smoothness. This article offer...The penalty function method is one basic method for solving constrained nonlinear programming, in which simple smooth exact penalty functions draw much attention for their simpleness and smoothness. This article offers a new kind of simple smooth approximative exact penalty function of general constrained nonlinear programmings and analyzes its properties.展开更多
To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requi...To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requirements of desired target changing and on-line reconfigurable control and guidance.Based on the rapid footprint analysis,whether the new target is within the current footprint area is firstly judged.If not,the rocket engine ignites by the logic obtained from the analysis of optimal flight range by the method of hp-adaptive Gauss pseudospectral method(hp-GPM).Then,an on-board trajectory generation method based on powered quasi-equilibrium glide condition(QEGC)and linear quadratic regulator(LQR)method is used to guide the vehicle to the new target.The effectiveness of the guidance method consisted of powered on-board trajectory generation,LQR trajectory tracking,footprint calculation,and ignition time determination is indicated by some simulation examples.展开更多
A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable...A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.展开更多
The authors consider optimization methods for box constrained variational inequalities. First, the authors study the KKT-conditions problem based on the original problem. A merit function for the KKT-conditions proble...The authors consider optimization methods for box constrained variational inequalities. First, the authors study the KKT-conditions problem based on the original problem. A merit function for the KKT-conditions problem is proposed, and some desirable properties of the merit function are obtained. Through the merit function, the original problem is reformulated as minimization with simple constraints. Then, the authors show that any stationary point of the optimization problem is a solution of the original problem. Finally, a descent algorithm is presented for the optimization problem, and global convergence is shown.展开更多
In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is...In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.展开更多
Recently, Bal proposed a block-counter-diagonal and a block-counter-triangular precon- ditioning matrices to precondition the GMRES method for solving the structured system of linear equations arising from the Galerki...Recently, Bal proposed a block-counter-diagonal and a block-counter-triangular precon- ditioning matrices to precondition the GMRES method for solving the structured system of linear equations arising from the Galerkin finite-element discretizations of the distributed control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned matrices. By applying the special structures and properties of the eigenvector matrices of the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers of the eigenvector matrices and give asymptotic convergence factors of the preconditioned GMRES methods with the block-counter-diagonal and the block-counter-triangular pre- conditioners. Experimental results show that the convergence analyses match well with the numerical results.展开更多
The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equiv...The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equivalently transformed to a well-known unconstrained problem of matrix equation whose coefficient matrices contain the corresponding eigenvector, and hence the constrained problem can be solved in terms of the eigenvectors of P. A simple and eigenvector-free formula of the general solutions to the constrained problem by generalized inverses of the coefficient matrices A and B is presented. Moreover, a similar problem of the matrix equation with generalized constraint is discussed.展开更多
In this paper,we study optimization problems with the sparsity constraints.Firstly we give the expressions of the Mordukhovich(the limiting)normal cone of sparsity constraint and its intersection with a polyhedral set...In this paper,we study optimization problems with the sparsity constraints.Firstly we give the expressions of the Mordukhovich(the limiting)normal cone of sparsity constraint and its intersection with a polyhedral set,and then based on these expressions we present the first-order necessary conditions for sparsity constrained optimization.展开更多
Engineering optimization problems can be always classified into two main categories including the linear programming(LP)and nonlinear programming(NLP)problems.Each programming problem further involves the unconstraine...Engineering optimization problems can be always classified into two main categories including the linear programming(LP)and nonlinear programming(NLP)problems.Each programming problem further involves the unconstrained conditions and constrained conditions for design variables of the optimized system.This paper will focus on the issue about the design problem of NLP with the constrained conditions.The employed method for such NLP problems is a variant of particle swarm optimization(PSO),named improved particle swarm optimization(IPSO).The developed IPSO is to modify the velocity updating formula of the algorithm to enhance the search ability for given optimization problems.In this work,many different kinds of physical engineering optimization problems are examined and solved via the proposed IPSO algorithm.Simulation results compared with various optimization methods reported in the literature will show the effectiveness and feasibility for solving NLP problems with the constrained conditions.展开更多
基金Supported by the National Key R&D Program of China(No.2023YFA1011100)NSFC(No.12131004)。
文摘Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems.
基金provided by grants from National Natural Science Foundation of China (Nos.40905050,40805020,40830955)the state Key Development Program for Basic Research (Grant No.2006CB400503)the KZCX3-SW-230 of the Chinese Academy of Sciences (CAS),LASG Free Exploration Fund,and LASG State Key Laboratory Special Fund
文摘The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
基金Project supported by the National Science Foundation of USA (No.CMS-0503910)
文摘The probability distribution function of n random elements subjected to the flexible boundary condition is derived. The probability density is a descending curve and converges to a delta function as n tends to infinity. The distribution of the minimum value is discussed in context of ordered statistics.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
文摘The penalty function method is one basic method for solving constrained nonlinear programming, in which simple smooth exact penalty functions draw much attention for their simpleness and smoothness. This article offers a new kind of simple smooth approximative exact penalty function of general constrained nonlinear programmings and analyzes its properties.
基金supported by the National Natural Science Foundation of China(No.61403100)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015037)
文摘To make full use of expanded maneuverability and increased range,adaptive constrained on-board guidance technology is the key capability for a glide vehicle with a double-pulse rocket engine,especially under the requirements of desired target changing and on-line reconfigurable control and guidance.Based on the rapid footprint analysis,whether the new target is within the current footprint area is firstly judged.If not,the rocket engine ignites by the logic obtained from the analysis of optimal flight range by the method of hp-adaptive Gauss pseudospectral method(hp-GPM).Then,an on-board trajectory generation method based on powered quasi-equilibrium glide condition(QEGC)and linear quadratic regulator(LQR)method is used to guide the vehicle to the new target.The effectiveness of the guidance method consisted of powered on-board trajectory generation,LQR trajectory tracking,footprint calculation,and ignition time determination is indicated by some simulation examples.
基金Project supported by the National Natural Science Foundation of China(Nos.10902077,11172209, and 10572031)
文摘A new smooth gap function for the box constrained variational inequality problem (VIP) is proposed based on an integral global optimality condition. The smooth gap function is simple and has some good differentiable properties. The box constrained VIP can be reformulated as a differentiable optimization problem by the proposed smooth gap function. The conditions, under which any stationary point of the optimization problem is the solution to the box constrained VIP, are discussed. A simple frictional contact problem is analyzed to show the applications of the smooth gap function. Finally, the numerical experiments confirm the good theoretical properties of the method.
基金the National Natural Science Foundation of China(No.19971002)
文摘The authors consider optimization methods for box constrained variational inequalities. First, the authors study the KKT-conditions problem based on the original problem. A merit function for the KKT-conditions problem is proposed, and some desirable properties of the merit function are obtained. Through the merit function, the original problem is reformulated as minimization with simple constraints. Then, the authors show that any stationary point of the optimization problem is a solution of the original problem. Finally, a descent algorithm is presented for the optimization problem, and global convergence is shown.
文摘In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.
文摘Recently, Bal proposed a block-counter-diagonal and a block-counter-triangular precon- ditioning matrices to precondition the GMRES method for solving the structured system of linear equations arising from the Galerkin finite-element discretizations of the distributed control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned matrices. By applying the special structures and properties of the eigenvector matrices of the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers of the eigenvector matrices and give asymptotic convergence factors of the preconditioned GMRES methods with the block-counter-diagonal and the block-counter-triangular pre- conditioners. Experimental results show that the convergence analyses match well with the numerical results.
基金The work of the first author was supported by the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix equation AXB = E with the constraint PX = sXP is considered, where P is a given Hermitian matrix satisfying P^2 = I and s = ±1. By an eigenvalue decomposition of P, the constrained problem can be equivalently transformed to a well-known unconstrained problem of matrix equation whose coefficient matrices contain the corresponding eigenvector, and hence the constrained problem can be solved in terms of the eigenvectors of P. A simple and eigenvector-free formula of the general solutions to the constrained problem by generalized inverses of the coefficient matrices A and B is presented. Moreover, a similar problem of the matrix equation with generalized constraint is discussed.
基金supported by the National Natural Sciences Foundation of China(No.11371116)Innovation Foundation for Graduate Students of Harbin Normal University(No.HSDSSCX2015-28).
文摘In this paper,we study optimization problems with the sparsity constraints.Firstly we give the expressions of the Mordukhovich(the limiting)normal cone of sparsity constraint and its intersection with a polyhedral set,and then based on these expressions we present the first-order necessary conditions for sparsity constrained optimization.
基金This work was partially supported by the Ministry of Science and Technology of Taiwan Under Grant No.MOST 108-2221-E-366-003.
文摘Engineering optimization problems can be always classified into two main categories including the linear programming(LP)and nonlinear programming(NLP)problems.Each programming problem further involves the unconstrained conditions and constrained conditions for design variables of the optimized system.This paper will focus on the issue about the design problem of NLP with the constrained conditions.The employed method for such NLP problems is a variant of particle swarm optimization(PSO),named improved particle swarm optimization(IPSO).The developed IPSO is to modify the velocity updating formula of the algorithm to enhance the search ability for given optimization problems.In this work,many different kinds of physical engineering optimization problems are examined and solved via the proposed IPSO algorithm.Simulation results compared with various optimization methods reported in the literature will show the effectiveness and feasibility for solving NLP problems with the constrained conditions.