期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of soil physicochemical properties,particle size fractions and mineralogy on the leaching potentials of arsenic and antimony in abandoned mine soils
1
作者 A.S.M.Fazle BARI Dane LAMB +1 位作者 Geoff R.MACFARLANE Mohammad Mahmudur RAHMAN 《Pedosphere》 SCIE CAS CSCD 2023年第5期744-753,共10页
At abandoned mine sites,arsenic(As)-and antimony(Sb)-enriched soils are often disposed of through onsite burial or capping.In highly weathered mine sites,the mobility of As and Sb is typically controlled by iron(Fe)(I... At abandoned mine sites,arsenic(As)-and antimony(Sb)-enriched soils are often disposed of through onsite burial or capping.In highly weathered mine sites,the mobility of As and Sb is typically controlled by iron(Fe)(III)/Fe(II)phases;thus,the suitability of such disposal methods and appropriate testing techniques are questionable.In the present study,leaching potentials of As and Sb were examined using the toxicity characteristic leaching procedure(TCLP),waste extraction test(WET),and WET-extended procedure(WET-EXT)at three abandoned mine site soils in Australia.The leached concentration of As regularly exceeded USEPA criteria(5 mg L^(-1)).The highest leached concentrations of As and Sb were observed in the finest particle size fraction(<0.053 mm)by WET-EXT(1040 mg L^(-1)for As and 21.10 mg L^(-1)for Sb)followed by WET(800 mg L^(-1)for As and 20.90 mg L^(-1)for Sb).The TCLP method resulted in the lowest concentrations of leached As(0.0009 mg L^(-1))and Sb(0.0003 mg L^(-1)).Crystalline and amorphous As-bearing Fe oxides were the main phases in the soils studied.However,the best correlations of leached As determined by TCLP(0.832),WET(0.944),and WET-EXT(0.961)were found with the non-specifically sorbed(NS1)As fraction.The mineralogical and sequential extraction data clearly indicate the dominant role of Fe geochemistry in controlling leachability of As and Sb.The TCLP method was unlikely to be suitable for assessing leachability,as it exhibited no relationship with leachable Fe and substantially lower leached As and Sb than the other two methods.Given the high to extremely high leachable As and Sb concentrations,most of the soil samples would not be recommended for placement in capping works,old shafts,or reduction systems(e.g.,collection in drainage basins). 展开更多
关键词 particle size fraction sequential extraction toxic element toxicity characteristic leaching procedure waste extraction test
原文传递
Effective alleviation of Cd stress to microbial communities in mining reclamation soils by thiourea-modified biochar amendment 被引量:2
2
作者 Yanfeng ZHU Jing MA +3 位作者 Fu CHEN Ruilian YU Gongren HU Yongjun YANG 《Pedosphere》 SCIE CAS CSCD 2022年第6期866-875,共10页
Reclaimed soils in mining area usually display low fertility and present Cd stress.The amendment of modified biochar effectively fixes Cd in soils,enhances soil fertility,and reduces Cd stress in soil microorganisms.H... Reclaimed soils in mining area usually display low fertility and present Cd stress.The amendment of modified biochar effectively fixes Cd in soils,enhances soil fertility,and reduces Cd stress in soil microorganisms.However,the effect of thiourea-modified biochar(TBC)on microbial adaptability to Cd stress in mining reclamation soils is still unclear.The present work studied the Cd immobilization and microbial community changes in a mining reclamation soil displaying extreme Cd contamination under TBC amendment.The results indicated that the amendment of TBC significantly enhanced(P<0.05)soil pH,the content of available phosphorus(AP),and the activities of urease and polyphenol oxidase by 1.3%,463.4%,54.4%,and 84.0%,respectively,compared to the control without amendment.The amount of toxicity characteristic leaching procedure-extracable Cd decreased(P<0.05)by 68.0%in the TBC-amended soil compared with the unamended soil.The structure of soil microbiota was reorganized and the alpha diversity index was increased in the TBC treatment.The TBC amendment increased the relative abundances of Proteobacteria,Bacteroidota,and Zoopagomycota,which were strongly associated(P<0.01)with higher soil pH and AP.Structural equation model results demonstrated that Cd immobilization was directly influenced by soil pH,AP,and urease,and indirectly affected by bacterial structure in the TBC treatment.The TBC amendment can effectively improve the structural composition of soil bacteria under Cd stress and enhance the pathways of decreasing soil Cd availability as well.The results might facilitate the development of in-situ remediation programs in Cd-contaminated soils in the future. 展开更多
关键词 available phosphorus bacterial structure Cd immobilization enzyme activity toxicity characteristic leaching procedure-extracable Cd
原文传递
Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid 被引量:9
3
作者 Xiaojuan Su Jun Zhu +3 位作者 Qingling Fu Jichao Zuo Yonghong Liu Hongqing Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第2期64-73,共10页
Understanding the effects of oxalic acid(OA) on the immobilization of Pb(Ⅱ) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A s... Understanding the effects of oxalic acid(OA) on the immobilization of Pb(Ⅱ) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(Ⅱ) by KH2PO4, phosphate rock(PR), activated phosphate rock(APR) and synthetic hydroxyapatite(HAP) at different phosphate:Pb(P:Pb) molar ratios(0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or Ca Cl2, Community Bureau of Reference(BCR) sequential extraction and toxicity characteristic leaching procedure(TCLP)methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after120 days was reduced by 100% when soils were amended with APR, HAP and HAP + OA, and the TCLP-Pb was 〈5 mg/L for the red soil at P:Pb molar ratio 4.0. Water-soluble Pb could not be detected and the TCLP-Pb was 〈5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APR was most effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pb molar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability. 展开更多
关键词 Soil lead remediation toxicity characteristics leaching procedure(TCLP) Phosphorous materials Oxalic acid Lead fraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部