Toxicity identification evaluation (TIE) can be used to determine the specific toxicant(s) in industrial effluents.In the current study,the authors have attempted to combine the advantages of the model organism,Caenor...Toxicity identification evaluation (TIE) can be used to determine the specific toxicant(s) in industrial effluents.In the current study,the authors have attempted to combine the advantages of the model organism,Caenorhabditis elegans,with the virtues of the TIE technique,to evaluate and identify the toxicity on aging from a paper recycling mill effluent.The results indicate that only the toxicities from mixed cellulose (MC) filtration and EDTA treatment are similar to the baseline aging toxicity,suggesting ...展开更多
We used toxicity identification evaluation (TIE) method to confirm the combinational effects of identified toxic metals in a paper recycling mill effluent in inducing the decreased lifespan in nematode Caenorhabditi...We used toxicity identification evaluation (TIE) method to confirm the combinational effects of identified toxic metals in a paper recycling mill effluent in inducing the decreased lifespan in nematode Caenorhabditis elegans.Exposure to Ca + Al caused more severely decreased lifespan than that exposed to Ca,or Al;and exposure to Ca + Fe induced more severely decreased lifespan than that exposed to Ca,or Fe.Exposure to Ca+Al+Fe caused more severely decreased lifespan than that exposed to Ca,or Ca+Fe.Moreover,the baseline toxicity on lifespan was doubled by doubling the concentration of combined metals (Ca+Al+Fe) in spiking test in original effluent (oe),and lifespan defects in oe+Ca+Al+Fe exposed nematodes were more severe than that in Ca+Al+Fe exposed nematode.Therefore,Ca+Al+Fe exposure may largely explain the formation of decreased lifespan induced by the examined industrial effluent.Furthermore,the observed reduction of lifespan induced by the combination of high level of Ca with other metals may be at least partially independent of the insulin-like pathway.展开更多
基金the National Natural Science Foundation of China (No.30771113)the Southeast University Foundation for Excellent Young Scholars (No.4023001013)
文摘Toxicity identification evaluation (TIE) can be used to determine the specific toxicant(s) in industrial effluents.In the current study,the authors have attempted to combine the advantages of the model organism,Caenorhabditis elegans,with the virtues of the TIE technique,to evaluate and identify the toxicity on aging from a paper recycling mill effluent.The results indicate that only the toxicities from mixed cellulose (MC) filtration and EDTA treatment are similar to the baseline aging toxicity,suggesting ...
基金supported by the National Natural Science Foundation of China (No. 30771113,30870810)the Program for New Century Excellent Talents in Universityprovided by the Caenorhabditis Genetics Center (Funded by the NIH,National Center for Foundation from Research Resource,USA)
文摘We used toxicity identification evaluation (TIE) method to confirm the combinational effects of identified toxic metals in a paper recycling mill effluent in inducing the decreased lifespan in nematode Caenorhabditis elegans.Exposure to Ca + Al caused more severely decreased lifespan than that exposed to Ca,or Al;and exposure to Ca + Fe induced more severely decreased lifespan than that exposed to Ca,or Fe.Exposure to Ca+Al+Fe caused more severely decreased lifespan than that exposed to Ca,or Ca+Fe.Moreover,the baseline toxicity on lifespan was doubled by doubling the concentration of combined metals (Ca+Al+Fe) in spiking test in original effluent (oe),and lifespan defects in oe+Ca+Al+Fe exposed nematodes were more severe than that in Ca+Al+Fe exposed nematode.Therefore,Ca+Al+Fe exposure may largely explain the formation of decreased lifespan induced by the examined industrial effluent.Furthermore,the observed reduction of lifespan induced by the combination of high level of Ca with other metals may be at least partially independent of the insulin-like pathway.