The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present res...The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.展开更多
Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation a...Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation analysis. According to the bulk chemistry, GRV 98003 is classified as a member of ⅠAB group, and Ujimqin as a unique one of ⅠAB iron meteorite complex. The elemental abundance pattern and correlation between elements (e. g. Ni-Au, Co-Au, As-Au, W- Au, Cu-Au, Sb-Au) of GRV 98003 are similar with those of NAW 468 (ⅠAB), but significantly depleted in refractory siderophile elements ( Re, It) and moderate volatile elements (Ca, Ge) relative to the latter. In addition, we reclassify Nantan (ⅢCD) as a member of ⅠAB main group (MG) and Yongning (ⅠA) as a unique iron meteorite related with IAB iron meteorite complex.展开更多
Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns f...Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.展开更多
The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub...The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub>2</sub>O<sub>2</sub> to get the pure graphite phase. PIXE measurements were performed with thick targets of the pure graphite phase. Differences in the trace element concentrations between the graphite phase and the matrix have been observed. The effect of Ti and As in graphite phase on the nodularization rate and the mechanical properties have been studied.展开更多
Determination of(Fe,Cr)_7C_3 in Cr27 cast iron results about 30 v.-%.Minor Si and Mn are present.Sectional area of the M_7C_3 grains is 1—50μm^2.Combining matrix analysis of elec- tron diffraction pattern with calcu...Determination of(Fe,Cr)_7C_3 in Cr27 cast iron results about 30 v.-%.Minor Si and Mn are present.Sectional area of the M_7C_3 grains is 1—50μm^2.Combining matrix analysis of elec- tron diffraction pattern with calculated angle between plane traces,{011}twins and also {013}twins producing local environment for Ru_7B_3 are observed in the orthorhombic M_7C_3. A crystallographic model for M_7C_3 is proposed.展开更多
The sinterability of Portland Cement with iron tailings as raw materials are studied. Experimental results showed that iron tailings, owing to the existences of the trace elements, play an important role in improving ...The sinterability of Portland Cement with iron tailings as raw materials are studied. Experimental results showed that iron tailings, owing to the existences of the trace elements, play an important role in improving the sinterability of the raw meals and decreasing the calcination temperature.展开更多
The Khanlogh deposit in the Cenozoic Quchan-Sabzevar magmatic belt, NE Iran, is hosted by Oligocene granodioritic rock. The Khanlogh intrusive body is I-type granitoid of the calc-alkaline series. The orebodies are ve...The Khanlogh deposit in the Cenozoic Quchan-Sabzevar magmatic belt, NE Iran, is hosted by Oligocene granodioritic rock. The Khanlogh intrusive body is I-type granitoid of the calc-alkaline series. The orebodies are vein, veinlet, massive, and breccia in shape and occur along the fault zones and fractures within the host rock. Ore minerals dominantly comprise magnetite and apatite associated with epidote, clinopyroxene, calcite, quartz, and chlorite. Apatites of the Khanlogh deposit have a high concentration of REE, and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. Magnetites have a high concentration of REE and show weak to moderate LREE/HREE fractionation. They are comparable to the REE patterns in Kiruna-type iron ores and show an affinity to calc-alkaline magmas. The Khanlogh deposit is similar in the aspects of host rock lithology, alteration, mineralogy, and mineral chemistry to the Kiruna-type deposits. Field observations, hydrothermal alteration halos, style of mineralization, and the geochemical characteristics of apatite, magnetite, and host rock indicate that these magnetite veins have hydrothermal origin similar to Cenozoic Kiruna-type deposits within the Tarom subzone, NW Iran, and are not related to silica-iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran.展开更多
文摘The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.
基金supposed by the National Natural Science Foundation of China(Grant No.40232026).
文摘Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation analysis. According to the bulk chemistry, GRV 98003 is classified as a member of ⅠAB group, and Ujimqin as a unique one of ⅠAB iron meteorite complex. The elemental abundance pattern and correlation between elements (e. g. Ni-Au, Co-Au, As-Au, W- Au, Cu-Au, Sb-Au) of GRV 98003 are similar with those of NAW 468 (ⅠAB), but significantly depleted in refractory siderophile elements ( Re, It) and moderate volatile elements (Ca, Ge) relative to the latter. In addition, we reclassify Nantan (ⅢCD) as a member of ⅠAB main group (MG) and Yongning (ⅠA) as a unique iron meteorite related with IAB iron meteorite complex.
基金the Odisha State Pollution Control Board,Bhubaneswar,India
文摘Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.
文摘The graphite phase has been extracted from the nodular cast iron to measure the concentration of trace element in it. The impurity phase was removed from the extracted matter by dissolving it with HCl and HCl+H<sub>2</sub>O<sub>2</sub> to get the pure graphite phase. PIXE measurements were performed with thick targets of the pure graphite phase. Differences in the trace element concentrations between the graphite phase and the matrix have been observed. The effect of Ti and As in graphite phase on the nodularization rate and the mechanical properties have been studied.
文摘Determination of(Fe,Cr)_7C_3 in Cr27 cast iron results about 30 v.-%.Minor Si and Mn are present.Sectional area of the M_7C_3 grains is 1—50μm^2.Combining matrix analysis of elec- tron diffraction pattern with calculated angle between plane traces,{011}twins and also {013}twins producing local environment for Ru_7B_3 are observed in the orthorhombic M_7C_3. A crystallographic model for M_7C_3 is proposed.
文摘The sinterability of Portland Cement with iron tailings as raw materials are studied. Experimental results showed that iron tailings, owing to the existences of the trace elements, play an important role in improving the sinterability of the raw meals and decreasing the calcination temperature.
基金funded by the Ferdowsi University of Mashhad Research Grant Council
文摘The Khanlogh deposit in the Cenozoic Quchan-Sabzevar magmatic belt, NE Iran, is hosted by Oligocene granodioritic rock. The Khanlogh intrusive body is I-type granitoid of the calc-alkaline series. The orebodies are vein, veinlet, massive, and breccia in shape and occur along the fault zones and fractures within the host rock. Ore minerals dominantly comprise magnetite and apatite associated with epidote, clinopyroxene, calcite, quartz, and chlorite. Apatites of the Khanlogh deposit have a high concentration of REE, and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. Magnetites have a high concentration of REE and show weak to moderate LREE/HREE fractionation. They are comparable to the REE patterns in Kiruna-type iron ores and show an affinity to calc-alkaline magmas. The Khanlogh deposit is similar in the aspects of host rock lithology, alteration, mineralogy, and mineral chemistry to the Kiruna-type deposits. Field observations, hydrothermal alteration halos, style of mineralization, and the geochemical characteristics of apatite, magnetite, and host rock indicate that these magnetite veins have hydrothermal origin similar to Cenozoic Kiruna-type deposits within the Tarom subzone, NW Iran, and are not related to silica-iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran.