期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on a combinatorial control method for coaxial rotor aircraft based on sliding mode 被引量:5
1
作者 Yi-ran Wei Hong-bin Deng +2 位作者 Zhen-hua Pan Ke-wei Li Han Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期280-292,共13页
Aiming at the position and attitude tracking of coaxial rotor aircraft(CRA),this paper proposes a combinatorial control method of sliding mode control(SMC)coupled with proportional-integralderivative control(PIDC).Con... Aiming at the position and attitude tracking of coaxial rotor aircraft(CRA),this paper proposes a combinatorial control method of sliding mode control(SMC)coupled with proportional-integralderivative control(PIDC).Considering the complete description of flight dynamics,aerodynamics and airflow interference,the dynamical model of CRA is established.The dynamical model is simplified according to the actual flight,then the simplified dynamical model is divided into two subsystems:a fully-actuated subsystem and an under-actuated subsystem.The controller of the fully-actuated subsystem consists of a SMC controller coupled with a rate bounded PIDC controller,while the controller of the under-actuated subsystem is composed of a SMC controller.The sliding manifold is defined by combining the position and velocity tracking errors of the state variables for each subsystem.Lyapunov stability theory is used to verify the stability of the sliding mode controller,which ensures that all state trajectories of the system can reach and stay on the sliding mode surface,the uncertainty and external interference of the model are compensated.Simulation and experiment compared with the conventional PIDC are carried out,the results demonstrate the effectiveness and the robustness of the proposed control method of this paper. 展开更多
关键词 Coaxial rotor aircraft Sliding mode control Position and attitude tracking Simulation Experiment
下载PDF
Composite anti-disturbance position and attitude control for spacecrafts with parametric uncertainty and flexible vibration 被引量:4
2
作者 Zengbo LIU Yukai ZHU Jianzhong QIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期242-252,共11页
The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances incl... The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances including parametric uncertainties,flexible vibration,and unknown nonlinear dynamics degrade the control performance significantly.In order to enhance the system anti-disturbance ability,this paper proposes a composite anti-disturbance control law for the spacecraft position and attitude tracking.Firstly,the relative position and attitude dynamic models with multiple disturbances are established,where the refined descriptions of multiple disturbances are accomplished based on their characteristics.Then,by combining a dual Disturbance ObserverBased Control(DOBC)and a sliding mode control,a composite controller with hierarchical architecture is proposed,where the dual DOBC in the feedforward channel is used to reject the flexible vibration,environment disturbance,and complicated nonlinear dynamics,while the parametric uncertainties are attenuated by the sliding mode control in the feedback channel.Stability analysis is carried out for the closed-loop system by unifying the sliding mode dynamics and observer dynamics.Finally,the effectiveness of the proposed controller is verified via numerical simulation and hardware-in-the-loop test. 展开更多
关键词 Composite anti-disturbance control Flexible vibration Parametric uncertainty Spacecraft position and attitude tracking Tumbling non-cooperative target
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部