A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combin...A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations.展开更多
Tracking control is a very challenging problem in the networked control system(NCS), especially for the process with blurred mechanism and where only input-output data are available. This paper has proposed a data-bas...Tracking control is a very challenging problem in the networked control system(NCS), especially for the process with blurred mechanism and where only input-output data are available. This paper has proposed a data-based design approach for the networked tracking control system(NTCS). The method utilizes the input-output data of the controlled process to establish a predictive model with the help of fuzzy cluster modelling(FCM)technology. Then, the deduced error and error change in the future are treated as inputs of a fuzzy sliding mode controller(FSMC) to obtain a string of future control actions. These candidate control actions in the controller side are delivered to the plant side. Thus, the network induced time delays are compensated by selecting appropriate control action. Simulation outputs prove the validity of the proposed method.展开更多
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo...In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking perform...In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking performance. First, an alternate tracking error and a performance index with respect to the tracking error and the control effort are introduced in order to obtain better performance, especially, in reducing the cost of the control effort in the case of small attenuation levels. Next, H-infinity tracking performance, which attenuates the influence of both wavelet network approximation error and external disturbances on the modified tracking error, is formulated. Our results indicate that a small attenuation level does not lead to a large control signal. The proposed method insures an optimal trade-off between the amplitude of control signals and the performance of tracking errors. An example is given to illustrate the design efficiency.展开更多
The problem of adaptive output tracking is researched for a class of nonlinear network control systems with parameter uncertainties and time-delay. In this paper, a new program is proposed to design a state-feedback c...The problem of adaptive output tracking is researched for a class of nonlinear network control systems with parameter uncertainties and time-delay. In this paper, a new program is proposed to design a state-feedback controller for this system. For time-delay and parameter uncertainties problems in network control systems, applying the backstepping recursive method, and using Young inequality to process the time-delay term of the systems, a robust adaptive output tracking controller is designed to achieve robust control over a class of nonlinear time-delay network control systems. According to Lyapunov stability theory, Barbalat lemma and Gronwall inequality, it is proved that the designed state feedback controller not only guarantees the state of systems is uniformly bounded, but also ensures the tracking error of the systems converges to a small neighborhood of the origin. Finally, a simulation example for nonlinear network control systems with parameter uncertainties and time-delay is given to illustrate the robust effectiveness of the designed state-feedback controller.展开更多
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr...In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.展开更多
In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is ...In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.展开更多
Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback contr...Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters. .展开更多
基金This work wasfinancially supported bythe National Natural Science Foundation of China (Gsant No10572094)the Special Research Fundfor the Doctoral Programof Higher Education (Grant No20050248037)
文摘A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations.
基金supported by the National Natural Science Foundation of China(51205025,51775048,61602041)the Science and Technology Program of Beijing Municipal Education Commission(KM201611417009,KM201811417001)+6 种基金the Premium Funding Project(BPHR2017CZ08)for Academic Human Resources Development in Beijing Union University(BUU)the Beijing Natural Science FoundationBeijing Municipal Education Commission Joint Fund(KZ201811417048)the Project of 2018-2019 Basic Research Fund of BUUthe Beijing Advanced Innovation Center for Intelligent Robots and Systems Open Fund(2018I RS17)the 2016 Beijing High Level Personnel Cross Training Program “Practical Training Plan”the Project of Beijing Municipal Natural Science Foundation(4142018)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150314)
文摘Tracking control is a very challenging problem in the networked control system(NCS), especially for the process with blurred mechanism and where only input-output data are available. This paper has proposed a data-based design approach for the networked tracking control system(NTCS). The method utilizes the input-output data of the controlled process to establish a predictive model with the help of fuzzy cluster modelling(FCM)technology. Then, the deduced error and error change in the future are treated as inputs of a fuzzy sliding mode controller(FSMC) to obtain a string of future control actions. These candidate control actions in the controller side are delivered to the plant side. Thus, the network induced time delays are compensated by selecting appropriate control action. Simulation outputs prove the validity of the proposed method.
基金Supported by National Natural Science Foundation of China (61273108), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (106112013CD- JZR175501)
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2006CB705402)
文摘In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金the National Natural Science Foundation of China (No.60774049)the Major State Basic Research Development Program of China (2002CB312200).
文摘In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking performance. First, an alternate tracking error and a performance index with respect to the tracking error and the control effort are introduced in order to obtain better performance, especially, in reducing the cost of the control effort in the case of small attenuation levels. Next, H-infinity tracking performance, which attenuates the influence of both wavelet network approximation error and external disturbances on the modified tracking error, is formulated. Our results indicate that a small attenuation level does not lead to a large control signal. The proposed method insures an optimal trade-off between the amplitude of control signals and the performance of tracking errors. An example is given to illustrate the design efficiency.
文摘The problem of adaptive output tracking is researched for a class of nonlinear network control systems with parameter uncertainties and time-delay. In this paper, a new program is proposed to design a state-feedback controller for this system. For time-delay and parameter uncertainties problems in network control systems, applying the backstepping recursive method, and using Young inequality to process the time-delay term of the systems, a robust adaptive output tracking controller is designed to achieve robust control over a class of nonlinear time-delay network control systems. According to Lyapunov stability theory, Barbalat lemma and Gronwall inequality, it is proved that the designed state feedback controller not only guarantees the state of systems is uniformly bounded, but also ensures the tracking error of the systems converges to a small neighborhood of the origin. Finally, a simulation example for nonlinear network control systems with parameter uncertainties and time-delay is given to illustrate the robust effectiveness of the designed state-feedback controller.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project of National Science Foundation of China (No. 60934003)+2 种基金National Nature Science Foundation of China (No. 61074065)Key Project for Natural Science Research of Hebei Education Department, PRC(No. ZD200908)Key Project for Shanghai Committee of Science and Technology (No. 08511501600)
文摘In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.
基金Sponsored by the National Nature Science Foundation of China(Grant No.60774062)the Research Fund for the Doctoral Program of High Education of China(Grant No.20070213061)
文摘In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.
文摘Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters. .