A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of r...A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.展开更多
The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, refl...The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.展开更多
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ...A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.展开更多
In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discus...In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is c...An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出...通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出现偏差.基于此发现,构建了一种结合IoU和中心点距离的新度量NDIoU(Normalization distance IoU),在此基础上提出一种新的尺度估计方法,并将其嵌入判别式跟踪框架.即在训练阶段以NDIoU为标签,设计了具有中心点距离约束的损失函数监督网络的学习,在线推理期间通过最大化NDIoU微调目标尺度,以帮助外观模型更新时获得更加准确的样本.在七个数据集上与相关主流方法进行对比,所提方法的综合性能优于所有对比算法.特别是在GOT-10k数据集上,所提方法的AO、SR_(0.50)和SR_(0.75)三个指标达到了65.4%、78.7%和53.4%,分别超过基线模型4.3%、7.0%和4.2%.展开更多
由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更...由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.展开更多
基金This study was supported by the Special Fund for Basic Research and Operation of Chinese Academy of Meteorological Science:Development on quantitative precipitation forecasts for 0-6 h lead times by blending radar-based extrapolation and GRAPES-meso,Observation and retrieval methods of micro-physics,the National Natural Science Foundation of China
文摘A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.
基金Major funding for this research was provided under the United States Federal Aviation Administration (FAA) Aviation Weather Research Program Advanced Weather Radar Technologies Prod-uct Development Team Memorandum Of Understanding(MOU)partial funding was provided under NOAA-University of Oklahoma Cooperative Agreement Grant No. NA17RJ1227, U.S. Department of Commerce
文摘The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.
文摘A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.
文摘In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
基金supported by the National Natural Science Foundation of China(60574023)the Natural Science Foundation of Shandong Province(Z2005G01).
文摘An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.
文摘通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出现偏差.基于此发现,构建了一种结合IoU和中心点距离的新度量NDIoU(Normalization distance IoU),在此基础上提出一种新的尺度估计方法,并将其嵌入判别式跟踪框架.即在训练阶段以NDIoU为标签,设计了具有中心点距离约束的损失函数监督网络的学习,在线推理期间通过最大化NDIoU微调目标尺度,以帮助外观模型更新时获得更加准确的样本.在七个数据集上与相关主流方法进行对比,所提方法的综合性能优于所有对比算法.特别是在GOT-10k数据集上,所提方法的AO、SR_(0.50)和SR_(0.75)三个指标达到了65.4%、78.7%和53.4%,分别超过基线模型4.3%、7.0%和4.2%.
文摘由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.