期刊文献+
共找到812篇文章
< 1 2 41 >
每页显示 20 50 100
Influence of the Randomness of Longitudinal Resistance of Ballast Bed on Track-Bridge Interaction
1
作者 Weiwu Dai Yunfei Zhang +1 位作者 Bowen Liu Kaize Xie 《Engineering(科研)》 2023年第11期729-741,共13页
To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on ... To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on the principle of track-bridge interaction, a rail-sleeper-bridge-pier integrated simulation model that could consider the randomness of LRBB was established. Taking a continuous beam bridge for the heavy-haul railway as an example, the effect of the randomness of LRBB on the mechanical behavior of continuous welded rail (CWR) on bridges under typical conditions was carefully examined with a random sampling method and the simulation model. The results show that the LRBB corresponding sleeper displacement of 2 mm obeys a normal distribution. When the randomness of LRBB is considered, the amplitudes of rail expansion force, rail bending force, rail braking force and rail broken gap all follow normal distribution. As the standard deviations of the four indexes are small, which indicates the randomness of LRBB has little effect on track-bridge interaction. The distributions of the four indexes make it possible to design CWR on bridges with the limit state method. 展开更多
关键词 Continuous Welded Rail track-bridge interaction Longitudinal Resistance of Ballast Bed Normal Distribution
下载PDF
Application of engineered compressible inclusions to mitigating soilstructure interaction issues in integral bridge abutments
2
作者 Lila Dhar Sigdel Minghao Lu +3 位作者 Ahmed Al-qarawi Chin Jian Leo Samanthika Liyanapathirana Pan Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2132-2146,共15页
The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and ... The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and backward movements of the abutment in response to the expansion/contraction of the bridge deck lead to the formation of settlement trough and surface heaving,frequently creating a bump at the bridge approach and increasing the lateral earth pressure behind the abutment.Measures to reduce the bump at the bridge approach,including several treatment methods,such as compaction of selected backfill materials,grout injection,installation of approach slab,and using a layer of compressible inclusion material behind the abutment were proposed.However,these guidelines still lack sufficient design details and there are limited experimental findings to validate design assumptions.In this paper,the use of engineered compressible materials to alleviate the lateral earth pressure ratcheting and settlement at the bridge approach is investigated.The comparative study is presented for the soil-inclusion,material-structure and soil-structure interactions for an integral bridge under three different backfill conditions,i.e.(a)sand,(b)sand and EPS geofoam,and(c)sand and Infinergy®.The study was conducted in a special large-scale test chamber with a semi-scale abutment to gain better insights into the soil-structure interaction(SSI).The kinematics and rearrangement of the soil during the cyclic loading have been investigated to identify the mitigating effects of compressible inclusions.The comparative study indicates that both compressible inclusions perform comparatively well,however,Infinergy®is a better alternative than the medium-density EPS geofoam,as it works more effectively to reduce the backfill settlement and heaving as well as soil ratcheting effects under cyclic translational movement. 展开更多
关键词 Integral bridge Cyclic loading Stress ratcheting Settlement bump Earth pressure distribution Soil-structure interaction(SSI)
下载PDF
An extended multiple-support response spectrum method incorporating fluid-structure interaction for seismic analysis of deep-water bridges
3
作者 Wu Kun Li Ning Li Zhongxian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期211-223,共13页
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo... The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges. 展开更多
关键词 response spectrum method seismic response of bridge ground motion spatial variability fluid-structure interaction rdiation wave theory
下载PDF
Vehicle-Bridge Interaction Simulation and Damage Identification of a Bridge Using Responses Measured in a Passing Vehicle by Empirical Mode Decomposition Method
4
作者 Shohel Rana Md. Rifat Zaman +2 位作者 Md. Ibrahim Islam Ifty Seyedali Mirmotalebi Tahsin Tareque 《Open Journal of Civil Engineering》 2023年第4期742-755,共14页
To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic character... To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study. 展开更多
关键词 Structural Health Monitoring Vibration-Based Damage Identification Vehicle-bridge interaction Finite Element Model Empirical Mode Decomposition
下载PDF
Sensitive factors research for track-bridge interaction of Long-span X-style steel-box arch bridge on high-speed railway 被引量:8
5
作者 刘文硕 戴公连 何旭辉 《Journal of Central South University》 SCIE EI CAS 2013年第11期3314-3323,共10页
X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch b... X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable. 展开更多
关键词 高速铁路 大跨度结构 敏感因子 相互作用 拱桥 道桥 钢箱 风格
下载PDF
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:15
6
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
下载PDF
Self-excited vibration problems of maglev vehicle-bridge interaction system 被引量:11
7
作者 李金辉 李杰 +1 位作者 周丹峰 余佩倡 《Journal of Central South University》 SCIE EI CAS 2014年第11期4184-4192,共9页
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the... The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable. 展开更多
关键词 相互作用系统 自激振动 振动问题 车桥 磁浮 PD控制器 低通滤波器 悬浮控制
下载PDF
Soil Structure Interaction Effects on Pushover Analysis of Short Span RC Bridges 被引量:1
8
作者 Islam M. Ezz El-Arab 《Open Journal of Civil Engineering》 2017年第3期348-361,共14页
A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). S... A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges. 展开更多
关键词 SOIL Structure interaction PUSHOVER Analysis RC bridge Nonlinear
下载PDF
Numerical analysis on seismic response of Shinkansen bridge-train interaction system under moderate earthquakes 被引量:4
9
作者 Xingwen He Mitsuo Kawatani +1 位作者 Toshiro Hayashikawa Takashi Matsumoto 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第1期85-97,共13页
This study is intended to evaluate the influence of dynamic bridge-train interaction (BTI) on the seismic response of the Shinkansen system in Japan under moderate earthquakes. An analytical approach to simulate the... This study is intended to evaluate the influence of dynamic bridge-train interaction (BTI) on the seismic response of the Shinkansen system in Japan under moderate earthquakes. An analytical approach to simulate the seismic response of the BTI system is developed. In this approach, the behavior of the bridge structure is assumed to be within the elastic range under moderate ground motions. A bullet train car model idealized as a sprung-mass system is established. The viaduct is modeled with 3D finite elements. The BTI analysis algorithm is verified by comparing the analytical and experimental results. The seismic analysis is validated through comparison with a general program. Then, the seismic responses of the BTI system are simulated and evaluated. Some useful conclusions are drawn, indicating the importance of a proper consideration of the dynamic BTI in seismic design. 展开更多
关键词 seismic analysis train-bridge interaction seismic design SHINKANSEN
下载PDF
Alterable-element Method for Vehicle-bridge Interaction Considering the Transient Jump of Wheel 被引量:6
10
作者 吴川 刘学文 黄醒春 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期330-335,共6页
The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "con... The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "contact all along" assumption based on which wheels and lower structure are always contact was abandoned. The alterable element used in this method is a conceptional element, which is used to calculate the coupling interaction of upper and lower structures and has some typical characteristics: firstly it flows along with the moving of contact point; secondly whether it is used for calculation depends on the contact state; thirdly its sizes could change according to specific problems and so on. VISUAL FORTRAN program was coded, and different moving vehicle models were presented taking into consideration the effects of random corrugation in the numerical study. The numerical solutions are favored comparing with the results obtained by alternative methods when there is no jump phenomenon existed. With abrupt irregularity, the transient jump of wheel was studied using the present method. 展开更多
关键词 可变元法 车-桥相互作用 瞬间跳跃 车轮
下载PDF
Three-dimensional elasto-plastic finite element analysis of a soil-pilebridge interaction
11
作者 朱叶艇 ZHANG Zi-xin +1 位作者 YUAN Deng-ping HUANG Xin 《Journal of Chongqing University》 CAS 2017年第1期25-37,共13页
The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundatio... The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundation and its influential factors are analyzed comprehensively using a three-dimensional elasto-plastic finite element method. The adopted model and its input parameters are firstly verified by comparing the numerical results with the measured data of static loading tests of a single pile. Numerical analysis is then performed to investigate the load distribution and the load-settlement characteristics of super-large pile groups, and the models are verified using centrifuge laboratory model testing data. The mechanism of the interaction between pile groups and soil under different conditions is explored. 展开更多
关键词 finite element interaction friction pile bridge foundation pile groups
下载PDF
STRUCTURAL EVIDENCE FOR THE METAL ION BRIDGED LIGANDLIGAND INTERACTION:THE X-RAY CRYSTAL STRUCTURE OF [(2,2'-BIPYRIDYL)(PHENYLMALONATE)COPPER(Ⅱ)] TRIHYDRATE
12
作者 Qi Tao LIU Xiang Dong ZHANG +1 位作者 Wei GUAN Jin Yu SUN(Department of Chemistry, Liaoning University, Shenyang, 110036)(This work is supported by the National Natural Science Foundation of China) 《Chinese Chemical Letters》 SCIE CAS CSCD 1996年第3期263-264,共2页
The crystal structure of the ternary complex [Cu (L)(2, 2'-bipy)H2 O]·2H2O(L=phenylmalonate) has been determined by X-ray diffraction methods. The copperf(II) centerin five-coordinate Square-pyramidal structu... The crystal structure of the ternary complex [Cu (L)(2, 2'-bipy)H2 O]·2H2O(L=phenylmalonate) has been determined by X-ray diffraction methods. The copperf(II) centerin five-coordinate Square-pyramidal structure.It is of interest in this structure that the complexinvolves a metal ion bridge ligand-ligand aromatic ring stacking interaction 展开更多
关键词 interaction LIGANDLIGAND EVIDENCE THE STRUCTURAL COPPER PHENYLMALONATE bridgeD BIPYRIDYL
下载PDF
Interaction between Engineering Structures and Environment, Illustrated on the Examples of Bridges in Montenegro
13
作者 Radenko Pejovic Rade Zivkovic +1 位作者 Svetlana Jovanovic Mihailo Ostojic 《Journal of Environmental Science and Engineering(A)》 2016年第2期97-101,共5页
关键词 自然环境 桥梁结构 相互作用 工程结构 预应力混凝土 钢筋混凝土 集成环境 大型建筑
下载PDF
Improved Twin I-Girder Curved Bridge-Vehicle Interaction Analysis and Human Sensitivity to Vibration
14
作者 Md. Robiul Awall Toshiro Hayashikawa Tasnuva Humyra 《Journal of Civil Engineering and Architecture》 2016年第2期192-202,共11页
关键词 振动影响 车桥相互作用 梁弯曲 敏感性 车-桥耦合振动 ANSYS程序 三维有限元模型 桥梁振动
下载PDF
Effect of pile-soil-structure interaction on the cable-stayed bridge in response to the earthquake
15
作者 CHEN Yu 《International Journal of Technology Management》 2013年第2期4-7,共4页
关键词 结构相互作用 单索面斜拉桥 地震反应 桥桩 三维有限元模型 独塔斜拉桥 地震响应 MIDAS
下载PDF
Smartphone-based bridge frequency identification using vehicle contact-point response
16
作者 Liu Chengyin Zhu Yipeng +1 位作者 Zeng Qing Wu Xiaodong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1031-1043,共13页
Bridge frequency(BF)identification using the vehicle scanning method has attracted considerable attention during the last two decades.However,most previous studies have adopted unrealistic vehicle models,thus finding ... Bridge frequency(BF)identification using the vehicle scanning method has attracted considerable attention during the last two decades.However,most previous studies have adopted unrealistic vehicle models,thus finding limited practical applications.This study proposes a smartphone-based BF identification method that uses the contact-point acceleration response of a four degree-of-freedom vehicle model.The said response can be inferred from the vehicle body response measured by a smartphone.For realizing practical applications,this method is incorporated into a self-developed smartphone app to obtain data smoothly and identify BFs in a timely manner.Numerical and experimental investigations are performed to verify the effectiveness of the proposed method.In particular,the robustness of this method is investigated numerically against various factors,including the vehicle speed,bridge span,road roughness,and bridge type.Furthermore,laboratory calibration tests are performed to investigate the accuracy of the smartphone gyroscope in measuring the angular velocity,where anomalous data are detected and eliminated.Laboratory experiment results for a simply supported bridge indicate that the proposed method can be used to identify the first two BFs with acceptable accuracy. 展开更多
关键词 bridge frequency(BF)identification vehicle–bridge interaction four degree-of-freedom(DOF)vehicle model contact-point response SMARTPHONE
下载PDF
An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique
17
作者 Fabrizio Greco Paolo Lonetti +1 位作者 Arturo Pascuzzo Giulia Sansone 《Structural Durability & Health Monitoring》 EI 2023年第6期457-483,共27页
This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensio... This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios,including the effects of moving vehicle loads.In particular,the longitudinal and transversal beams are modeled through solid finite elements,while horizontal slabs are made of shell elements.Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics(CDM).In such a context,the proposed method utilizes an advanced and efficient computational strategy for reproducing Vehicle-Bridge Interaction(VBI)effects based on a moving mesh technique consistent with the Arbitrary Lagrangian-Eulerian(ALE)formulation.The proposed model adopts a moving mesh interface for tracing the positions of the contact points between the vehicle’s wheels and the bridge slabs.Such modeling strategy avoids using extremely refined discretization for structural members,thus drastically reducing computational efforts.Vibrational analyses in terms of damage scenarios are presented to verify how the presence of damage affects the natural frequencies of the structural system.In addition,a comprehensive investigation regarding the response of the bridge under moving vehicles is developed,also providing results in terms of Dynamic Amplification Factor(DAFs)for typical design bridge variables. 展开更多
关键词 bridge structures moving mesh technique vehicle-bridge interaction dynamics damage mechanics dynamic amplification factors
下载PDF
On dynamic analysis method for large-scale train-track-substructure interaction 被引量:2
18
作者 Lei Xu 《Railway Engineering Science》 2022年第2期162-182,共21页
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo... Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums. 展开更多
关键词 TRAIN Track dynamic interaction Railway substructures Finite elements Dynamics system Iterative solution Tunnel bridge
下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction
19
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 Quantum efficiency Electronic structure Steric interaction bridging sites CO_(2)reduction
下载PDF
Analysis of rail-bridge interaction of a high-speed railway suspension bridge under near-fault pulse-type earthquakes
20
作者 Xiangdong Yu Bangzheng Jiang Haiquan Jing 《Transportation Safety and Environment》 EI 2024年第3期71-84,共14页
Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of su... Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design. 展开更多
关键词 rail-bridge interaction high-speed railway suspension bridge near-fault pulse-type earthquakes loading history initial state
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部