期刊文献+
共找到19,708篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
1
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Practical Prescribed Time Tracking Control With Bounded Time-Varying Gain Under Non-Vanishing Uncertainties
2
作者 Dahui Luo Yujuan Wang Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期219-230,共12页
This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbance... This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbances makes PTC synthesis nontrivial. In this work, a control method that does not involve infinite time-varying gain is proposed, leading to a practical and global prescribed time tracking control solution for the strict-feedback systems, in spite of both the mismatched and nonvanishing uncertainties. Different from methods based on control switching to avoid the issue of infinite control gain that involves control discontinuity at the switching point, in our method a softening unit is exclusively included to ensure the continuity of the control action. Furthermore, in contrast to most existing prescribed-time control works where the control scheme is only valid on a finite time interval, in this work, the proposed control scheme is valid on the entire time interval. In addition, the prior information on the upper or lower bound of gi is not in need,enlarging the applicability of the proposed method. Both the theoretical analysis and numerical simulation confirm the effectiveness of the proposed control algorithm. 展开更多
关键词 Adaptive control prescribed time control(PTC) strict-feedback systems tracking control
下载PDF
Path Tracking Controller Design of Automated Parking Systems via NMPC with an Instructible Solution
3
作者 Liang Chen Zhaobo Qin +2 位作者 Manjiang Hu Yougang Bian Xiaoyan Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期353-367,共15页
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc... Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future. 展开更多
关键词 Automated parking Path tracking controller Nonlinear model predictive control Monte Carlo analysis
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
4
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
5
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 Adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
下载PDF
Project⁃based Pollutant Emission Control of Diesel Construction Equipment
6
作者 XIE Yixin FAN Hongqin 《施工技术(中英文)》 CAS 2024年第17期85-93,共9页
This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag... This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency. 展开更多
关键词 equipment diesel emissions control policy analysis
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
7
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Demagnetization Analysis and Velocity Tracking Control of In-wheel Motor
8
作者 Haihong Li Junjie Chen Zhiqi Liu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期1-11,共11页
The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for ... The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot. 展开更多
关键词 mobile robot velocity tracking disturbance estimation vector control
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
9
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Development of track geometry inspection equipment for high-speed comprehensive inspection train in China
10
作者 Yan Wang Shibin Wei +2 位作者 Fei Yang Jiyou Fei Jianfeng Guo 《Railway Sciences》 2024年第6期673-683,共11页
Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometr... Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage. 展开更多
关键词 track geometry inspection equipment High-speed comprehensive inspection Potential tapping requirements and technological direction High-speed railway
下载PDF
Adaptive Robust Control with Leakage-Type Control Law for Trajectory Tracking of Exoskeleton Robots
11
作者 Jin Tian Xiulai Wang +1 位作者 Ningling Ma Yutao Zhang 《Advances in Internet of Things》 2024年第3期53-66,共14页
This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accuratel... This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller. 展开更多
关键词 Trajectory tracking Adaptive Robust control Exoskeleton Robots UNCERTAINTIES
下载PDF
Slab Tracking and Controlling on Hot Plate Rolling Line
12
作者 姚小兰 邓波 +1 位作者 梁启宏 李保奎 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期161-164,共4页
By studying the slab moving in detail in the plate rolling process, the problem of slab tracking and controlling was solved by using the distributed control system. The problems of rhythm control for the big-complex s... By studying the slab moving in detail in the plate rolling process, the problem of slab tracking and controlling was solved by using the distributed control system. The problems of rhythm control for the big-complex system, the exchange of manual and automatic operations, the data exchange between the levelⅠ, TCS (technology control system) and levelⅡ, PCS (process control system), are solved. By this way, the automatic level of the plate production line is improved. 展开更多
关键词 hot rolling slab tracking slab controlling rolling automation
下载PDF
Formation of the Moving Analogy Target with C++ Language in TV Tracking Equipment
13
作者 NIUYan-xiong WUDong-sheng 《Semiconductor Photonics and Technology》 CAS 2003年第1期62-64,共3页
Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be va... Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be varied. The video signal transformed by video switching card is used to test the performances of the electronic box of TV tracking equipment. These performances include minimal tracking contrast, minimal size of tracking target, maximal tracking speed and capture time. 展开更多
关键词 TV tracking equipment moving analogy target C+ + language
下载PDF
A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot 被引量:6
14
作者 战强 刘增波 蔡尧 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期472-480,共9页
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic... Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular. 展开更多
关键词 spherical mobile robot trajectory tracking control back-stepping Lyapunov function
下载PDF
An adaptive switching control approach for trajectory tracking of robotic manipulators 被引量:1
15
作者 杨振 费树岷 +2 位作者 王芳 鲍安平 刘顾全 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期183-186,共4页
In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error a... In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carded out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads. 展开更多
关键词 adaptive control switch control roboticmanipulator trajectory tracking
下载PDF
ROBUST ADAPTIVE CONTROL SCHEME FOR IMPROVING LOW-SPEED PROFILE TRACKING PERFORMANCE OF HYBRID STEPPING MOTOR SERVO DRIVE 被引量:3
16
作者 陈卫东 容启亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期8-16,共9页
A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precisio... A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme. 展开更多
关键词 robust adaptive control tracking control stepping motor torque ripple
下载PDF
Self Adjusting Feedforward Compensation Tracking Control for Proportional Valve Controlled Motor 被引量:1
17
作者 彭熙伟 王渝 王向周 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期282-287,共6页
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v... Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation. 展开更多
关键词 self adjusting feedforward compensation deadzone compensation tracking control electrohydraulic proportional servo system
下载PDF
ADAPTIVE TRACKING CONTROL FOR A CLASS OF NONLINEAR COMPOSITE SYSTEMS *
18
作者 姜斌 万健如 +1 位作者 王先来 王江 《Transactions of Tianjin University》 EI CAS 1998年第1期88-91,共4页
In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli... In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method. 展开更多
关键词 nonlinear large scale systems adaptive tracking control input output linearization
下载PDF
Cold Chain Logistics Equipment Management and Control Based on Internet of Things
19
作者 秦立公 吴娇 +1 位作者 董津津 袁媛 《Agricultural Science & Technology》 CAS 2012年第5期1133-1138,共6页
The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management ... The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management and control were ana- lyzed from external form to internal nature. Through introducing the value chain and relevant equipments of cold chain logistics, the correlation between the main technologies in Internet of Things and the common indices for cold chain logistics equipment management and control was analyzed in detail. The application values of Internet of Things technologies in cold chain logistics equipment management and control were illustrated, including the sample analysis on the application of radio-frequency identification (RFID). After the establishment of BSC performance evaluation index system of cold chain logistics equipment management and control, the optimization measures and suggestions on cold chain logistics equipment management and control under Internet of Things were put forward. 展开更多
关键词 Internet of Things Cold chain logistics equipment management and control Radio-frequency identification Balanced scorecard
下载PDF
Visible and Infrared Band Tracking and Measuring Control System
20
作者 杨文淑 张以谟 《Transactions of Tianjin University》 EI CAS 2002年第3期165-169,共5页
This paper describes a new tracking and measuring control system for optical and electronic theodolite.This control system can provide automatic flying object tracking and measuring in visible and infrared band.It als... This paper describes a new tracking and measuring control system for optical and electronic theodolite.This control system can provide automatic flying object tracking and measuring in visible and infrared band.It also can provide real-time output of the measured results.By using the multi-mode measuring methods and the on-axis tracking control technique, the stability of automatic tracking,tracking accuracy and the comprehensive tracking performance of the theodolite can be improved.At the same time the smooth switch-over among several tracking modes can be carried out.New tracking techniques have been developed to deal with angular tracking rate that exceed 60 deg/s in velocity and 90 deg/s 2 in acceleration.At the present the tracking and measuring control system has been successfully applied in the optical and electronic theodolite. 展开更多
关键词 on-axis tracking control system THEODOLITE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部