An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-...An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-wave interference(CWI)in unified carrier telemetry,tracking,and command(TT&C)systems.With subcarrier modulation index as a priori condition,the existence of CWI is determined by comparing the energy center with the symmetric center.In the presence of interference,the interference frequency point is assumed and culled;sequentially,the spectral symmetry is used to verify whether the signal acquisition is realized.Theoretical analysis,simulations,and experimental results demonstrate that the method can realize the acquisition of the main carrier target signal with an interference-to-signal ratio of 31 dB,which represents an improvement over the existing continuous-wave interference mitigation for acquisition methods.展开更多
The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,te...The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.展开更多
Chang’e-5 mission is China’s first lunar sample return mission.It contains several new flight phases compared with the previous lunar missions,such as the lunar take-off and orbit insertion phase,the rendezvous and ...Chang’e-5 mission is China’s first lunar sample return mission.It contains several new flight phases compared with the previous lunar missions,such as the lunar take-off and orbit insertion phase,the rendezvous and docking phase,etc.Chang’e-5 mission is extremely complicated and full of new challenges.This paper sorts out the characteristics and the difficulties in telemetry,tracking,and command(TT&C)of Chang’e-5 mission.The main technical contribution is a reliable general design of the TT&C system,including the application of X-band TT&C in launch and early orbit phase(LEOP),multiple targets simultaneous TT&C in X-band,lunar surface benchmark calibration,high-precision and rapid orbit trajectory determination for the lunar surface take-off,remote guidance rendezvous and docking,the determination of the initial navigational value for the separation point of the Chang’e-5 orbiter and returner,and the design of the reentry measurement chain.Based on this scheme,a global deep space TT&C network and interplanetary reentry measurement chain have been established for China,and near-continuous TT&C support for China’s first extraterrestrial object sampling and return mission has been realized,ensuring reliable tracking,accurate measurement and accurate control.The global deep space network can provide TT&C support comparable to that of National Aeronautics and Space Administration(NASA)and European Space Agency(ESA)for subsequent lunar and deep space exploration missions.The techniques of rapid trajectory determination of lunar take-off and orbit entry,as well as high precision and remote guidance of lunar orbit rendezvous and docking can lay a technological foundation for the future manned lunar exploration missions and planetary sampling and return missions.展开更多
航天测控通信网自建成以来,整体运行较为稳定,但在网络安全方面也暴露出了一些问题,为研究和解决目前航天测控通信网中存在的网络安全问题,在分析TCP/IP(Transmission Control Protocol/Intcrnct Protocol,传输控制协议/互联网协议)分...航天测控通信网自建成以来,整体运行较为稳定,但在网络安全方面也暴露出了一些问题,为研究和解决目前航天测控通信网中存在的网络安全问题,在分析TCP/IP(Transmission Control Protocol/Intcrnct Protocol,传输控制协议/互联网协议)分层协议基本原理的基础上,研究了IP网数据链路层、网络层和传输层的协议漏洞及常见攻击方法,详细介绍了当前航天测控通信网的网络安全部署情况,根据网络现状分别对航天测控通信网上数据链路层、网络层和传输层存在的安全问题进行了纵向分析,针对分析出的各类安全问题,进一步给出了有效的防御措施和防护方法。最后,探讨提出了一套航天测控通信网配置维护管理系统的设计方案,通过建立设备配置信息库、检查信息记录库及网络故障库等,实现了对航天测控通信网安全稳定运行的有效管理。展开更多
基金Supported by the National Natural Science Foundation of China(61401026)
文摘An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-wave interference(CWI)in unified carrier telemetry,tracking,and command(TT&C)systems.With subcarrier modulation index as a priori condition,the existence of CWI is determined by comparing the energy center with the symmetric center.In the presence of interference,the interference frequency point is assumed and culled;sequentially,the spectral symmetry is used to verify whether the signal acquisition is realized.Theoretical analysis,simulations,and experimental results demonstrate that the method can realize the acquisition of the main carrier target signal with an interference-to-signal ratio of 31 dB,which represents an improvement over the existing continuous-wave interference mitigation for acquisition methods.
基金This work was supported in part by the National Natural Science Foundation of China(No.62373380).
文摘The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.
文摘Chang’e-5 mission is China’s first lunar sample return mission.It contains several new flight phases compared with the previous lunar missions,such as the lunar take-off and orbit insertion phase,the rendezvous and docking phase,etc.Chang’e-5 mission is extremely complicated and full of new challenges.This paper sorts out the characteristics and the difficulties in telemetry,tracking,and command(TT&C)of Chang’e-5 mission.The main technical contribution is a reliable general design of the TT&C system,including the application of X-band TT&C in launch and early orbit phase(LEOP),multiple targets simultaneous TT&C in X-band,lunar surface benchmark calibration,high-precision and rapid orbit trajectory determination for the lunar surface take-off,remote guidance rendezvous and docking,the determination of the initial navigational value for the separation point of the Chang’e-5 orbiter and returner,and the design of the reentry measurement chain.Based on this scheme,a global deep space TT&C network and interplanetary reentry measurement chain have been established for China,and near-continuous TT&C support for China’s first extraterrestrial object sampling and return mission has been realized,ensuring reliable tracking,accurate measurement and accurate control.The global deep space network can provide TT&C support comparable to that of National Aeronautics and Space Administration(NASA)and European Space Agency(ESA)for subsequent lunar and deep space exploration missions.The techniques of rapid trajectory determination of lunar take-off and orbit entry,as well as high precision and remote guidance of lunar orbit rendezvous and docking can lay a technological foundation for the future manned lunar exploration missions and planetary sampling and return missions.
文摘航天测控通信网自建成以来,整体运行较为稳定,但在网络安全方面也暴露出了一些问题,为研究和解决目前航天测控通信网中存在的网络安全问题,在分析TCP/IP(Transmission Control Protocol/Intcrnct Protocol,传输控制协议/互联网协议)分层协议基本原理的基础上,研究了IP网数据链路层、网络层和传输层的协议漏洞及常见攻击方法,详细介绍了当前航天测控通信网的网络安全部署情况,根据网络现状分别对航天测控通信网上数据链路层、网络层和传输层存在的安全问题进行了纵向分析,针对分析出的各类安全问题,进一步给出了有效的防御措施和防护方法。最后,探讨提出了一套航天测控通信网配置维护管理系统的设计方案,通过建立设备配置信息库、检查信息记录库及网络故障库等,实现了对航天测控通信网安全稳定运行的有效管理。