The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and the...The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and their influence on the simulation results was analyzed.Simulated and observed tracks and intensities of TCs were compared and these two indicators were combined and weighted to score the sample.Samples with higher scores were retained and samples with lower scores were eliminated to improve the overall quality of the ensemble forecast.For each sample,the track score and intensity score were added as the final score of the sample with weight proportions of 10 to 0,9 to 1,8 to 2,7 to 3,6 to 4,5 to 5.These were named as“tr”,“91”,“82”,“73”,“64”,and“55”,respectively.The WRF model was used to simulate five tropical cyclones in the northwestern Pacific to test the ability of this scheme to improve the forecast track and intensity of these cyclones.The results show that the sample optimization effectively reduced the track and intensity error,“55”usually had better performance on the short-term intensity prediction,and“tr”had better performance in short-term track prediction.From the overall performance of the track and intensity simulation,“91”was the best and most stable among all sample optimization schemes.These results may provide some guidance for optimizing operational ensemble forecasting of TCs.展开更多
A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tr...A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.展开更多
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments de...The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.展开更多
Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of ...Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of a typhoon, and the evolving real typhoon is forced to unreasonably adapt to this changeless vortex. For this reason, an asymmetrical typhoon bogus method with information blended from the analysis and the observation is put forward in this paper, in which the impact of the Subtropical High is also taken into consideration. With the fifth-generation Penn State/NCAR Mesoscale Model (MM5) and its adjoint model, a four-dimensional variational data assimilation (4D-Var) technique is employed to build a dynamic asymmetrical BDA scheme to assimilate different asymmetrical bogus vortexes at different time. The track and intensity of six surmner typhoons much influenced by the Subtropical High are simulated and the results are compared. It is shown that the improvement in track simulation in the new scheme is more significant than that in the traditional scheme. Moreover, the periods for which the track cannot be simulated well by the traditional scheme can be improved with the new scheme. The results also reveal that although the simulated typhoon intensity in the new scheme is generally weaker than that in the traditional scheme, this trend enables the new scheme to simulate, in the later period, closer-to-observation intensity than the traditional scheme. However, despite the fact that the observed intensity has been largely weakened, the simulated intensity at later periods of the BDA schemes is still very intensive, resulting in overly development of the typhoon during the simulation. The limitation to the simulation effect of the BDA scheme due to this condition needs to be further studied.展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFC1507602,2017YFC1501603)the National Natural Science Foundation of China(Grant No.41975136)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515011118)Sci-entific research project of Shanghai Science and Technology Com-mission(19dz1200101).
文摘The quality of ensemble forecasting is seriously affected by sample quality.In this study,the distributions of ensemble members based on the observed track and intensity of tropical cyclones(TCs)were optimized and their influence on the simulation results was analyzed.Simulated and observed tracks and intensities of TCs were compared and these two indicators were combined and weighted to score the sample.Samples with higher scores were retained and samples with lower scores were eliminated to improve the overall quality of the ensemble forecast.For each sample,the track score and intensity score were added as the final score of the sample with weight proportions of 10 to 0,9 to 1,8 to 2,7 to 3,6 to 4,5 to 5.These were named as“tr”,“91”,“82”,“73”,“64”,and“55”,respectively.The WRF model was used to simulate five tropical cyclones in the northwestern Pacific to test the ability of this scheme to improve the forecast track and intensity of these cyclones.The results show that the sample optimization effectively reduced the track and intensity error,“55”usually had better performance on the short-term intensity prediction,and“tr”had better performance in short-term track prediction.From the overall performance of the track and intensity simulation,“91”was the best and most stable among all sample optimization schemes.These results may provide some guidance for optimizing operational ensemble forecasting of TCs.
基金Model System for Monitoring the Interactions Between Air-Sea-Land in Coastal Area and Predicting Disaster-Causing Weather by China Meteorological Administration
文摘A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.
基金supported by the National Basic Research Program of China (2013CB430103, 2015CB452803)the National Natural Science Foundation of China (NSFC+2 种基金 Grant No. 41275093)the project of the specially-appointed professorship of Jiangsu Provincesupported by the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ13 0496)
文摘The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.
基金Natural Science Foundation of China (10871099 40805046+2 种基金 40830958)Specialized Projects of Public Welfare Industry (Meteorological Sector) (GYH(QX)2007-6-15)973 Program of National Key Foundamental Research and Development (2009CB421502)
文摘Axisymmetric bogus vortexes at sea level are usually used in the traditional bogus data assimilation (BDA) scheme. In the traditional scheme, the vortex could not accurately describe the specific characteristics of a typhoon, and the evolving real typhoon is forced to unreasonably adapt to this changeless vortex. For this reason, an asymmetrical typhoon bogus method with information blended from the analysis and the observation is put forward in this paper, in which the impact of the Subtropical High is also taken into consideration. With the fifth-generation Penn State/NCAR Mesoscale Model (MM5) and its adjoint model, a four-dimensional variational data assimilation (4D-Var) technique is employed to build a dynamic asymmetrical BDA scheme to assimilate different asymmetrical bogus vortexes at different time. The track and intensity of six surmner typhoons much influenced by the Subtropical High are simulated and the results are compared. It is shown that the improvement in track simulation in the new scheme is more significant than that in the traditional scheme. Moreover, the periods for which the track cannot be simulated well by the traditional scheme can be improved with the new scheme. The results also reveal that although the simulated typhoon intensity in the new scheme is generally weaker than that in the traditional scheme, this trend enables the new scheme to simulate, in the later period, closer-to-observation intensity than the traditional scheme. However, despite the fact that the observed intensity has been largely weakened, the simulated intensity at later periods of the BDA schemes is still very intensive, resulting in overly development of the typhoon during the simulation. The limitation to the simulation effect of the BDA scheme due to this condition needs to be further studied.