Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
驱动力控制系统(Traction Control System,TCS)是在制动防抱死系统的基础上发展起来的一套主动安全控制系统,它根据汽车的行驶状况,通过采用适当的控制算法使汽车驱动轮在恶劣路面或复杂行驶条件下也能产生最佳的纵向驱动力,从而提高汽...驱动力控制系统(Traction Control System,TCS)是在制动防抱死系统的基础上发展起来的一套主动安全控制系统,它根据汽车的行驶状况,通过采用适当的控制算法使汽车驱动轮在恶劣路面或复杂行驶条件下也能产生最佳的纵向驱动力,从而提高汽车的驱动性能和行驶稳定安全性能。通过对TCS控制原理的分析,明确滑转率的控制目标,结合TCS的控制方式,阐述TCS的常用控制算法,并对其进行比较,探讨TCS控制算法的选择依据和方法。展开更多
Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control...Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control periods. The initial output of the TCS (referred to as the torque base in this paper), which has a great impact on the driving performance of the vehicle in early cycles, remains to be investigated. In order to improve the control performance of the TCS in the first several cycles, an algorithm is proposed to determine the torque base. First, torque bases are calculated by two different methods, one based on states judgment and the other based on the vehicle dynamics. The confidence level of the torque base calculated based on the vehicle dynamics is also obtained. The final torque base is then determined based on the two torque bases and the confidence level. Hardware-in-the-loop(HIL) simulation and vehicle tests emulating sudden start on low friction roads have been conducted to verify the proposed algorithm. The control performance of a PID-controlled TCS with and without the proposed torque base algorithm is compared, showing that the proposed algorithm improves the performance of the TCS over the first several cycles and enhances about 5% vehicle speed by contrast. The proposed research provides a more proper initial value for TCS control, and improves the performance of the first several control cycles of the TCS.展开更多
Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct meas...Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding.Therefore,a proportional–integral controller,which operates simultaneously with a recently proposed swarm intelligencebased adhesion estimation algorithm,is proposed in this study.This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail.To validate the methodology,a tram wheel test stand with an independently rotating wheel,which is a model of some low floor trams produced in Czechia,is considered.Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
针对电动汽车在冰雪低附着极端工况极易出现的驱动轮过度滑转问题,以电动汽车驱动电机转矩为控制变量,设计了一种电动汽车驱动防滑防牵引力控制系统(Traction control system,TCS)滑模控制器,控制器通过调节驱动电机转矩,将滑转率控制...针对电动汽车在冰雪低附着极端工况极易出现的驱动轮过度滑转问题,以电动汽车驱动电机转矩为控制变量,设计了一种电动汽车驱动防滑防牵引力控制系统(Traction control system,TCS)滑模控制器,控制器通过调节驱动电机转矩,将滑转率控制在目标值附近,使汽车持续获得最大路面附着,防止车轮过度滑转,对应用滑模控制出现的抖振问题,设计了一种改进的指数型趋近律,用以削弱系统抖振。仿真结果表明,设计的TCS滑模控制器通过控制驱动电机转矩能将汽车的滑转率控制在目标值附近,使得汽车持续获得最大的路面附着,充分抑制汽车打滑,提高了汽车行驶稳定性,在整个控制过程中驱动电机转矩和状态变量收敛快速且十分平滑,抖振削弱效果良好。展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
文摘驱动力控制系统(Traction Control System,TCS)是在制动防抱死系统的基础上发展起来的一套主动安全控制系统,它根据汽车的行驶状况,通过采用适当的控制算法使汽车驱动轮在恶劣路面或复杂行驶条件下也能产生最佳的纵向驱动力,从而提高汽车的驱动性能和行驶稳定安全性能。通过对TCS控制原理的分析,明确滑转率的控制目标,结合TCS的控制方式,阐述TCS的常用控制算法,并对其进行比较,探讨TCS控制算法的选择依据和方法。
基金supported by National Natural Science Foundation of China(Grant Nos. 50905092, 51275557)Open Foundation of State Key Laboratory of Automotive Safety and Energy(Grant Nos. zz2011-052, zz2011-021)
文摘Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control periods. The initial output of the TCS (referred to as the torque base in this paper), which has a great impact on the driving performance of the vehicle in early cycles, remains to be investigated. In order to improve the control performance of the TCS in the first several cycles, an algorithm is proposed to determine the torque base. First, torque bases are calculated by two different methods, one based on states judgment and the other based on the vehicle dynamics. The confidence level of the torque base calculated based on the vehicle dynamics is also obtained. The final torque base is then determined based on the two torque bases and the confidence level. Hardware-in-the-loop(HIL) simulation and vehicle tests emulating sudden start on low friction roads have been conducted to verify the proposed algorithm. The control performance of a PID-controlled TCS with and without the proposed torque base algorithm is compared, showing that the proposed algorithm improves the performance of the TCS over the first several cycles and enhances about 5% vehicle speed by contrast. The proposed research provides a more proper initial value for TCS control, and improves the performance of the first several control cycles of the TCS.
基金supported by University of Pardubice,Czechia,Eskisehir Technical University,Turkey,and Newcastle University,United Kingdom.
文摘Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding.Therefore,a proportional–integral controller,which operates simultaneously with a recently proposed swarm intelligencebased adhesion estimation algorithm,is proposed in this study.This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail.To validate the methodology,a tram wheel test stand with an independently rotating wheel,which is a model of some low floor trams produced in Czechia,is considered.Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
文摘针对电动汽车在冰雪低附着极端工况极易出现的驱动轮过度滑转问题,以电动汽车驱动电机转矩为控制变量,设计了一种电动汽车驱动防滑防牵引力控制系统(Traction control system,TCS)滑模控制器,控制器通过调节驱动电机转矩,将滑转率控制在目标值附近,使汽车持续获得最大路面附着,防止车轮过度滑转,对应用滑模控制出现的抖振问题,设计了一种改进的指数型趋近律,用以削弱系统抖振。仿真结果表明,设计的TCS滑模控制器通过控制驱动电机转矩能将汽车的滑转率控制在目标值附近,使得汽车持续获得最大的路面附着,充分抑制汽车打滑,提高了汽车行驶稳定性,在整个控制过程中驱动电机转矩和状态变量收敛快速且十分平滑,抖振削弱效果良好。