The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta...Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using th...In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand...Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand the risk of disease outbreaks during expanding environmental perturbation.Here,we conducted a large survey based on microscopic examination and molecular analysis of haemosporidian parasite infection in raptors rescued at the Beijing Raptor Rescue Centre.Combining these data with biological and ecological variables of the raptors,we determined predictors that affect the probability of haemosporidian infection using generalized linear mixed models and multimodel inference.Our results showed that infection probability exhibited considerable variation across host species in raptors,and body mass,sex,and evolutionary history played relatively weaker roles in driving infection probability.Instead,activity pattern,age,geographic range size,migration distance,and nest type were important predictors of the probability of haemosporidian infection,and the role of each predictor differed in the three main haemosporidian genera(Plasmodium,Haemoproteus,and Leucocytozoon).This macro-ecological analysis will add to our understanding of host traits that influence the probability of avian haemosporidian infection and will help inform risk of emerging diseases.展开更多
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment pro...The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.展开更多
A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies t...A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples.展开更多
Probability assessment in some scenarios may involve unusual aspects such as requiring certain values for some events and extremely high or low probabilities in other cases.
The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wo...The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.展开更多
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes....This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.展开更多
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were s...In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.展开更多
Ship rolling in random waves is a complicated nonlinear motion that contributes substantially to ship instability and capsizing.The finite element method(FEM)is employed in this paper to solve the Fokker Planck(FP)equ...Ship rolling in random waves is a complicated nonlinear motion that contributes substantially to ship instability and capsizing.The finite element method(FEM)is employed in this paper to solve the Fokker Planck(FP)equations numerically for homoclinic and heteroclinic ship rolling under random waves described as periodic and Gaussian white noise excitations.The transient joint probability density functions(PDFs)and marginal PDFs of the rolling responses are also obtained.The effects of stimulation strength on ship rolling are further investigated from a probabilistic standpoint.The homoclinic ship rolling has two rolling states,the connection between the two peaks of the PDF is observed when the periodic excitation amplitude or the noise intensity is large,and the PDF is remarkably distributed in phase space.These phenomena increase the possibility of a random jump in ship motion states and the uncertainty of ship rolling,and the ship may lose stability due to unforeseeable facts or conditions.Meanwhile,only one rolling state is observed when the ship is in heteroclinic rolling.As the periodic excitation amplitude grows,the PDF concentration increases and drifts away from the beginning location,suggesting that the ship rolling substantially changes in a cycle and its stability is low.The PDF becomes increasingly uniform and covers a large region as the noise intensity increases,reducing the certainty of ship rolling and navigation safety.The current numerical solutions and analyses may be applied to evaluate the stability of a rolling ship in irregular waves and capsize mechanisms.展开更多
In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modula...In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.展开更多
The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have v...The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.展开更多
Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for t...Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for the joint intensity probability density functions of filtered random speckle fields is derived according to their probability distributions.Moreover,the normalized second-order intensity correlation functions are calculated for the three cases of low-pass,bandpass and high-pass filterings to study the resolution and visibility in the FGI system.Numerical simulations show that the resolution and visibility predicted by our model agree well with the experimental results,which also explains why FGI can achieve a super-resolution image and better visibility than traditional ghost imaging.展开更多
With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,t...With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.展开更多
The phasing out of protective measures by governments and public health agencies, despite continued seriousness of the coronavirus pandemic, leaves individuals who are concerned for their health with two basic options...The phasing out of protective measures by governments and public health agencies, despite continued seriousness of the coronavirus pandemic, leaves individuals who are concerned for their health with two basic options over which they have control: 1) minimize risk of infection by being vaccinated and by wearing a face mask when appropriate, and 2) minimize risk of transmission upon infection by self-isolating. For the latter to be effective, it is essential to have an accurate sense of the probability of infectivity as a function of time following the onset of symptoms. Epidemiological considerations suggest that the period of infectivity follows a lognormal distribution. This proposition is tested empirically by construction of the lognormal probability density function and cumulative distribution function based on quantiles of infectivity reported by several independent investigations. A comprehensive examination of a prototypical ideal clinical study, based on general statistical principles (the Principle of Maximum Entropy and the Central Limit Theorem) reveals that the probability of infectivity is a lognormal random variable. Subsequent evolution of new variants may change the parameters of the distribution, which can be updated by the methods in this paper, but the form of the probability function is expected to remain lognormal as this is the most probable distribution consistent with mathematical requirements and available information.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
文摘Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
文摘In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金funded by the National Natural Science Foundation of China(No.210100191).
文摘Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand the risk of disease outbreaks during expanding environmental perturbation.Here,we conducted a large survey based on microscopic examination and molecular analysis of haemosporidian parasite infection in raptors rescued at the Beijing Raptor Rescue Centre.Combining these data with biological and ecological variables of the raptors,we determined predictors that affect the probability of haemosporidian infection using generalized linear mixed models and multimodel inference.Our results showed that infection probability exhibited considerable variation across host species in raptors,and body mass,sex,and evolutionary history played relatively weaker roles in driving infection probability.Instead,activity pattern,age,geographic range size,migration distance,and nest type were important predictors of the probability of haemosporidian infection,and the role of each predictor differed in the three main haemosporidian genera(Plasmodium,Haemoproteus,and Leucocytozoon).This macro-ecological analysis will add to our understanding of host traits that influence the probability of avian haemosporidian infection and will help inform risk of emerging diseases.
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金supported by the Basic Scientific Research Business Expenses of Central Universities(3072022QBZ0806)。
文摘The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.
文摘A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples.
文摘Probability assessment in some scenarios may involve unusual aspects such as requiring certain values for some events and extremely high or low probabilities in other cases.
文摘The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.
基金Research Project on Lightning Protection Technology for 35 kV Collector Lines in Wuxuan Qinglan Wind Farm(SFC/WXY-ZX-FW-23-008)Strong Electromagnetic Pulse Protection(Lightning)Effect in Guangdong Yuedian Zhuhai Biqing Bay Sea Wind Field and Real-time Monitoring Technology Research and Development Project of Grounding ResistanceResearch and Application Demonstration Project of Lightning Protection Technology for Offshore and Island Wind Field of China General Nuclear New Energy South China Branch.
文摘This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.
基金the National Natural Science Foundation of China(Nos.52088102,51875540)。
文摘Ship rolling in random waves is a complicated nonlinear motion that contributes substantially to ship instability and capsizing.The finite element method(FEM)is employed in this paper to solve the Fokker Planck(FP)equations numerically for homoclinic and heteroclinic ship rolling under random waves described as periodic and Gaussian white noise excitations.The transient joint probability density functions(PDFs)and marginal PDFs of the rolling responses are also obtained.The effects of stimulation strength on ship rolling are further investigated from a probabilistic standpoint.The homoclinic ship rolling has two rolling states,the connection between the two peaks of the PDF is observed when the periodic excitation amplitude or the noise intensity is large,and the PDF is remarkably distributed in phase space.These phenomena increase the possibility of a random jump in ship motion states and the uncertainty of ship rolling,and the ship may lose stability due to unforeseeable facts or conditions.Meanwhile,only one rolling state is observed when the ship is in heteroclinic rolling.As the periodic excitation amplitude grows,the PDF concentration increases and drifts away from the beginning location,suggesting that the ship rolling substantially changes in a cycle and its stability is low.The PDF becomes increasingly uniform and covers a large region as the noise intensity increases,reducing the certainty of ship rolling and navigation safety.The current numerical solutions and analyses may be applied to evaluate the stability of a rolling ship in irregular waves and capsize mechanisms.
基金supported in part by the National Key Research and Development Program of China under Grant 2019YFB1803400in part by the National Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111.
文摘In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.
基金supported by the Foundation Strengthening Program Technology Field Foundation(2020-JCJQ-JJ-132)。
文摘The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302)the Project of Innovation and Entrepreneurship Training Program for college students of Liaoning University(Grant No.S202110140003)。
文摘Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for the joint intensity probability density functions of filtered random speckle fields is derived according to their probability distributions.Moreover,the normalized second-order intensity correlation functions are calculated for the three cases of low-pass,bandpass and high-pass filterings to study the resolution and visibility in the FGI system.Numerical simulations show that the resolution and visibility predicted by our model agree well with the experimental results,which also explains why FGI can achieve a super-resolution image and better visibility than traditional ghost imaging.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.
文摘The phasing out of protective measures by governments and public health agencies, despite continued seriousness of the coronavirus pandemic, leaves individuals who are concerned for their health with two basic options over which they have control: 1) minimize risk of infection by being vaccinated and by wearing a face mask when appropriate, and 2) minimize risk of transmission upon infection by self-isolating. For the latter to be effective, it is essential to have an accurate sense of the probability of infectivity as a function of time following the onset of symptoms. Epidemiological considerations suggest that the period of infectivity follows a lognormal distribution. This proposition is tested empirically by construction of the lognormal probability density function and cumulative distribution function based on quantiles of infectivity reported by several independent investigations. A comprehensive examination of a prototypical ideal clinical study, based on general statistical principles (the Principle of Maximum Entropy and the Central Limit Theorem) reveals that the probability of infectivity is a lognormal random variable. Subsequent evolution of new variants may change the parameters of the distribution, which can be updated by the methods in this paper, but the form of the probability function is expected to remain lognormal as this is the most probable distribution consistent with mathematical requirements and available information.