Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air tr...Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliabl...Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.展开更多
The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability qua...The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.展开更多
representation capability of deep learning(DL) and the optimal decision making and control capability of reinforcement learning(RL), is a good approach to address this problem. Traffic environment is built up by combi...representation capability of deep learning(DL) and the optimal decision making and control capability of reinforcement learning(RL), is a good approach to address this problem. Traffic environment is built up by combining intelligent driver model(IDM) and lane-change model as behavioral model for vehicles. To increase the stochastic of the established traffic environment, tricks such as defining a speed distribution with cutoff for traffic cars and using various politeness factors to represent distinguished lane-change style, are taken. For training an artificial agent to achieve successful strategies that lead to the greatest long-term rewards and sophisticated maneuver, deep deterministic policy gradient(DDPG) algorithm is deployed for learning. Reward function is designed to get a trade-off between the vehicle speed, stability and driving safety. Results show that the proposed approach can achieve good autonomous maneuvering in a scenario of complex traffic behavior through interaction with the environment.展开更多
The Safety of The Intended Functionality(SOTIF)challenge represents the triggering condition by elements of a specific scenario and exposes the function limitation of an autonomous vehicle(AV),which leads to hazards.A...The Safety of The Intended Functionality(SOTIF)challenge represents the triggering condition by elements of a specific scenario and exposes the function limitation of an autonomous vehicle(AV),which leads to hazards.As for operationcontent-related features,the scenario is similar to AVs’SOTIF research and development.Therefore,scenario generation is a significant topic for SOTIF verification and validation procedure,especially in the simulation testing of AVs.Thus,in this paper,a well-designed scenario architecture is first defined,with comprehensive scenario elements,to present SOTIF trigger conditions.Then,considering complex traffic disturbance as trigger conditions,a novel SOTIF scenario generation method is developed.An indicator,also known as Scenario Potential Risk,is defined as the combination of the safety control intensity and the prior collision probability.This indicator helps identify critical scenarios in the proposed method.In addition,the corresponding vehicle motion models are established for general straight roads,curved roads,and safety assessment areas.As for the traffic participants’motion model,it is designed to construct the key dynamic events.To efficiently search for critical scenarios with the trigger of complex traffic flow,this scenario is encoded as genes and it is regenerated through selection,mutation,and crossover iteration processes,known as the Genetic Algorithm(GA).Experimental results show that the GA-based method could efficiently construct diverse and critical traffic scenarios,contributing to the construction of the SOTIF scenario library.展开更多
基金This work was supported by the Na⁃tional Natural Science Foundation of China(No.61903187)Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20190732)。
文摘Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
基金co-supported by the State Key Program of National Natural Science Foundation of China (No. 91538204)the National Science Fund for Distinguished Young Scholars (No. 61425014)the National Key Technologies R&D Program of China (No. 2015BAG15B01)
文摘Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.
文摘The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.
文摘representation capability of deep learning(DL) and the optimal decision making and control capability of reinforcement learning(RL), is a good approach to address this problem. Traffic environment is built up by combining intelligent driver model(IDM) and lane-change model as behavioral model for vehicles. To increase the stochastic of the established traffic environment, tricks such as defining a speed distribution with cutoff for traffic cars and using various politeness factors to represent distinguished lane-change style, are taken. For training an artificial agent to achieve successful strategies that lead to the greatest long-term rewards and sophisticated maneuver, deep deterministic policy gradient(DDPG) algorithm is deployed for learning. Reward function is designed to get a trade-off between the vehicle speed, stability and driving safety. Results show that the proposed approach can achieve good autonomous maneuvering in a scenario of complex traffic behavior through interaction with the environment.
基金the financial support of the National Science Foundation of China Project:U1964203 and 52072215National key R&D Program of China:2020YFB1600303.
文摘The Safety of The Intended Functionality(SOTIF)challenge represents the triggering condition by elements of a specific scenario and exposes the function limitation of an autonomous vehicle(AV),which leads to hazards.As for operationcontent-related features,the scenario is similar to AVs’SOTIF research and development.Therefore,scenario generation is a significant topic for SOTIF verification and validation procedure,especially in the simulation testing of AVs.Thus,in this paper,a well-designed scenario architecture is first defined,with comprehensive scenario elements,to present SOTIF trigger conditions.Then,considering complex traffic disturbance as trigger conditions,a novel SOTIF scenario generation method is developed.An indicator,also known as Scenario Potential Risk,is defined as the combination of the safety control intensity and the prior collision probability.This indicator helps identify critical scenarios in the proposed method.In addition,the corresponding vehicle motion models are established for general straight roads,curved roads,and safety assessment areas.As for the traffic participants’motion model,it is designed to construct the key dynamic events.To efficiently search for critical scenarios with the trigger of complex traffic flow,this scenario is encoded as genes and it is regenerated through selection,mutation,and crossover iteration processes,known as the Genetic Algorithm(GA).Experimental results show that the GA-based method could efficiently construct diverse and critical traffic scenarios,contributing to the construction of the SOTIF scenario library.