Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in...Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.展开更多
This paper discusses traffic engineering with multi protocol label switching (MPLS) in a backbone of Internet data center (IDC) network. The traditional SPF routing limitations are analyzed and the traffic engineerin...This paper discusses traffic engineering with multi protocol label switching (MPLS) in a backbone of Internet data center (IDC) network. The traditional SPF routing limitations are analyzed and the traffic engineering concept is given. MPLS, resource reservation protocol (RSVP) and enhanced link status Protocols intermediate system to intermediate system (IS IS) are reviewed to provide a background for traffic engineering, the general issues of designing an MPLS system of IDC network for traffic engineering are then discussed. Finally a practical example with MPLS traffic engineering is shown.展开更多
The emergence of Segment Routing(SR)provides a novel routing paradigm that uses a routing technique called source packet routing.In SR architecture,the paths that the packets choose to route on are indicated at the in...The emergence of Segment Routing(SR)provides a novel routing paradigm that uses a routing technique called source packet routing.In SR architecture,the paths that the packets choose to route on are indicated at the ingress router.Compared with shortest-path-based routing in traditional distributed routing protocols,SR can realize a flexible routing by implementing an arbitrary flow splitting at the ingress router.Despite the advantages of SR,it may be difficult to update the existing IP network to a full SR deployed network,for economical and technical reasons.Updating partial of the traditional IP network to the SR network,thus forming a hybrid SR network,is a preferable choice.For the traffic is dynamically changing in a daily time,in this paper,we propose a Weight Adjustment algorithm WASAR to optimize routing in a dynamic hybrid SR network.WASAR algorithm can be divided into three steps:firstly,representative Traffic Matrices(TMs)and the expected TM are obtained from the historical TMs through ultrascalable spectral clustering algorithm.Secondly,given the network topology,the initial network weight setting and the expected TM,we can realize the link weight optimization and SR node deployment optimization through a Deep Reinforcement Learning(DRL)algorithm.Thirdly,we optimize the flow splitting ratios of SR nodes in a centralized online manner under dynamic traffic demands,in order to improve the network performance.In the evaluation,we exploit historical TMs to test the performance of the obtained routing configuration in WASAR.The extensive experimental results validate that our proposed WASAR algorithm has superior performance in reducing Maximum Link Utilization(MLU)under the dynamic traffic.展开更多
Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.How...Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.However,upgrading current IP network to a full SR one can be costly and difficult.Hybrid IP/SR network will last for some time.Aiming at the low flexibility problem of static TE policies in the current SR networks,this paper proposes a Deep Reinforcement Learning(DRL)based TE scheme.The proposed scheme employs multi-path transmission and use DRL to dynamically adjust the traffic splitting ratio among different paths based on the network traffic distribution.As a result,the network congestion can be mitigated and the performance of the network is improved.Simulation results show that our proposed scheme can improve the throughput of the network by up to 9%than existing schemes.展开更多
A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and...A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.展开更多
Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability an...Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability and complexity.In recent years,Segment Routing(SR)has emerged as a promising source routing paradigm.As one of the most important applications of SR,Segment Routing Traffic Engineering(SR-TE),which enables a headend to steer traffic along specific paths represented as ordered lists of instructions called segment lists,has the capability to overcome the above challenges due to its flexibility and scalability.In this paper,we conduct a comprehensive survey on SR-TE.A thorough review of SR-TE architecture is provided in the first place,reviewing the core components and implementation of SR-TE such as SR Policy,Flexible Algorithm and SR-native algorithm.Strengths of SR-TE are also discussed,as well as its major challenges.Next,we dwell on the recent SR-TE researches on routing optimization with various intents,e.g.,optimization on link utilization,throughput,QoE(Quality of Experience)and energy consumption.Afterwards,node management for SR-TE are investigated,including SR node deployment and candidate node selection.Finally,we discuss the existing challenges of current research activities and propose several research directions worth of future exploration.展开更多
Based on traffic engineering, the network topology is described with network graph. An algorithm for the derivation of data communication capability in network links and the analysis of connectivity performance betwee...Based on traffic engineering, the network topology is described with network graph. An algorithm for the derivation of data communication capability in network links and the analysis of connectivity performance between node pairs is given through standardized transformation of the original descriptive matrix for the link performance, and resolution of transitive closure for adjacent-incident matrix of network in view of randomness of network events, which provides a feasible way for analysis and improvement of network performance.展开更多
An approach to traffic engineering that uses differentiated services (DS) andmulti-protocol label switching (MPLS) to provide quantitative network quality of service (QoS)guarantees over an IP network was proposed. Th...An approach to traffic engineering that uses differentiated services (DS) andmulti-protocol label switching (MPLS) to provide quantitative network quality of service (QoS)guarantees over an IP network was proposed. The traffic associated with assured forwarding (AF)Per-Hop behavior (PHB) in differentiated services enabled IP network was modeled. Furthermore, theeffect of such traffic on network resources with die objective of developing efficient trafficengineering methodologies was analyzed and the optimization problem relating to traffic engineeringin DS networks with an MPLS core was formulated. The service received by TCP and UDP flows when theyshare either a link or a MPLS traffic trunk was also compared and found that in order to benefitfrom traffic engineering, MPLS trunks should be implemented end-end (first router to last router).If some part of the network is MPLS trunk-unaware, the benefits are reduced or eliminated.展开更多
General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quali...General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.展开更多
The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility...The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.展开更多
Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In th...Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In that sense, NoC architectures should be properly designed so as to provide efficient traffic engineering, as well as QoS support. Routing algorithm choice in conjunction with other parameters, such as network size and topology, traffic features (time and spatial distribution), as well as packet injection rate, packet size, and buffering capability, are all equivalently critical for designing a robust NoC architecture, on the grounds of traffic engineering and QoS provision. In this paper, a thorough numerical investigation is achieved by taking into consideration the criticality of selecting the proper routing algorithm, in conjunction with all the other aforementioned parameters. This is done via implementation of four routing evaluation traffic scenarios varying each parameter either individually, or as a set, thus exhausting all possible combinations, and making compact decisions on proper routing algorithm selection in NoC architectures. It has been shown that the simplicity of a deterministic routing algorithm such as XY, seems to be a reasonable choice, not only for random traffic patterns but also for non-uniform distributed traffic patterns, in terms of delay and throughput for 2D mesh NoC systems.展开更多
As a promising approach to improve network reliability, proactive failure recovery (PFR) re-routes failure affected traffic to backup paths without waiting for the completion of IP routing convergence. However the f...As a promising approach to improve network reliability, proactive failure recovery (PFR) re-routes failure affected traffic to backup paths without waiting for the completion of IP routing convergence. However the failure affected traffic may cause congestion if it is not carefully allocated over the backup paths according to their available capacity. A post failure traffic engineering (PostTE) scheme is proposed to balance the load in the PFR scheme. Loop-free backup paths are prepared in advance to cover all the potential single-link failures. The failure affected load is locally allocated to the backup paths through solving a linear programming (LP) problem. Most of the time, the maximum link utilization (MLU) of the network is minimized under both the failure and failure-free cases. For the tested education networks, the LP problem can be solved within milliseconds.展开更多
Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and t...Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.展开更多
With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The ...With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The heterogeneity of spatial distribution of information credibility from sensor networks is analyzed and a new measure,information credibility function(ICF),is proposed to describe this heterogeneity.Three possible functional forms of sensor ICF and their corresponding expressions are presented.Then,two feasible operations of spatial superposition of sensor ICFs are discussed.Finally,a numerical example is introduced to show the calibration method of sensor ICF and obtain the spatially related properties of expressway in Beijing.The results show that the sensor ICF of expressway in Beijing possesses a negative exponent property.The traffic information is more abundant at or near the locations of sensor,while with the distance away from the sensor increasing,the traffic information credibility will be declined by an exponential trend.The new measure provides theoretical bases for the optimal locations of traffic sensor networks and the mechanism research of spatial distribution of traffic information credibility.展开更多
Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS ...Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS described the propagation of queue within a link while VOS reflected the spillover velocity of vehicle queue.Based on the two indexes,network jam simulation was carried out on a regular signalized road network.The simulation results show that:1) The propagation of traffic congestion on a signalized road network can be classified into two stages:virtual split driven stage and flow rate driven stage.The former stage is characterized by decreasing virtual split while the latter only depends on flow rate; 2) The jam propagation rate and direction are dependent on traffic demand distribution and other network parameters.The direction with higher demand gets more chance to be jammed.Our findings can serve as the basis of the prevention of the formation and propagation of network traffic jam.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system...To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.展开更多
The effects of socio-demographics, land use characteristics and trip attributes on the commute mode choice are studied with a nested logit (NL) model. Based on the random utility maximum theory, the NL model is form...The effects of socio-demographics, land use characteristics and trip attributes on the commute mode choice are studied with a nested logit (NL) model. Based on the random utility maximum theory, the NL model is formulated. The analysis is carried out in the main area of Nanjing. Direct and cross elasticities are calculated to analyze the effects of travel time and travel cost on the selection of travel mode choice. The results reveal that the non-motorized travel modes are more attractive in the areas with higher housing and employment accessibility and car owners are found to be more likely to commute to work by car. The bus and subway choice probabilities are more sensitive to changes in travel times than to changes in travel costs. In conclusion, a comprehensive public transit system and effective integration of land use and transportation policies help to relieve the traffic congestion levels caused by the increasing urban sprawl.展开更多
The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway reg...The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway regularity of two stages 6: 00--7:00 and 7: 00--9:00 is comparatively analyzed, and it is found that both the traffic conditions and the passenger demand affect headway regularity. A bus arrival model, which assumes that the dwell time of a bus is linear in headway, is built to probe the effect of scheduled headway, and the model is simulated by Matlab. The simulation results reveal that the departure intervals and fluctuations affect headway regularity. Longer intervals and less fluctuation mean higher regularity of headway. And, the fluctuation has a more obvious influence on headway regularity than the interval. Controlling the fluctuations of scheduled headway can effectively raise the regularity of headway and improve the level of public transport service.展开更多
To alleviate the resulting increase in energy consumption and emissions and other issues caused by the traffic congestion ahead of the expressway toll station, a novel traffic flowcontrol method is put forward based o...To alleviate the resulting increase in energy consumption and emissions and other issues caused by the traffic congestion ahead of the expressway toll station, a novel traffic flowcontrol method is put forward based on the environment-friendly conception. The technical thinking of inducing the slowly moving traffic into a batch pass is determined based on the conclusion of the research, traffic flowtheory and traffic sensing detection technology. The model of stop times is established and the parameters of the system are optimized in accordance with the principle of minimizing the fuel consumption. The optimal location selection of traffic control lights and Detector 2 for queue of different lengths at toll stations are calculated based on the model. Finally, the effect of the congestion flowcontrol system is verified via the Paramics simulation system. The result shows that the control system is capable of reducing90% of fuel consumption for vehicles going through toll stations.展开更多
文摘Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.
文摘This paper discusses traffic engineering with multi protocol label switching (MPLS) in a backbone of Internet data center (IDC) network. The traditional SPF routing limitations are analyzed and the traffic engineering concept is given. MPLS, resource reservation protocol (RSVP) and enhanced link status Protocols intermediate system to intermediate system (IS IS) are reviewed to provide a background for traffic engineering, the general issues of designing an MPLS system of IDC network for traffic engineering are then discussed. Finally a practical example with MPLS traffic engineering is shown.
基金supported by the MSIT(Ministry of Science,ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2016-0-00465)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘The emergence of Segment Routing(SR)provides a novel routing paradigm that uses a routing technique called source packet routing.In SR architecture,the paths that the packets choose to route on are indicated at the ingress router.Compared with shortest-path-based routing in traditional distributed routing protocols,SR can realize a flexible routing by implementing an arbitrary flow splitting at the ingress router.Despite the advantages of SR,it may be difficult to update the existing IP network to a full SR deployed network,for economical and technical reasons.Updating partial of the traditional IP network to the SR network,thus forming a hybrid SR network,is a preferable choice.For the traffic is dynamically changing in a daily time,in this paper,we propose a Weight Adjustment algorithm WASAR to optimize routing in a dynamic hybrid SR network.WASAR algorithm can be divided into three steps:firstly,representative Traffic Matrices(TMs)and the expected TM are obtained from the historical TMs through ultrascalable spectral clustering algorithm.Secondly,given the network topology,the initial network weight setting and the expected TM,we can realize the link weight optimization and SR node deployment optimization through a Deep Reinforcement Learning(DRL)algorithm.Thirdly,we optimize the flow splitting ratios of SR nodes in a centralized online manner under dynamic traffic demands,in order to improve the network performance.In the evaluation,we exploit historical TMs to test the performance of the obtained routing configuration in WASAR.The extensive experimental results validate that our proposed WASAR algorithm has superior performance in reducing Maximum Link Utilization(MLU)under the dynamic traffic.
基金supported by the National Key R&D Project(No.2020YFB1804803)the Research and Development Program in Key Areas of Guangdong Province(No.2018B010113001)。
文摘Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.However,upgrading current IP network to a full SR one can be costly and difficult.Hybrid IP/SR network will last for some time.Aiming at the low flexibility problem of static TE policies in the current SR networks,this paper proposes a Deep Reinforcement Learning(DRL)based TE scheme.The proposed scheme employs multi-path transmission and use DRL to dynamically adjust the traffic splitting ratio among different paths based on the network traffic distribution.As a result,the network congestion can be mitigated and the performance of the network is improved.Simulation results show that our proposed scheme can improve the throughput of the network by up to 9%than existing schemes.
基金Project(2003AA781011) supported by the National High-Tech Research and Development of Program of China Project(20072022) supported by Science and Technology Foundation of Liaoning Province,China
文摘A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.
基金partially supported by Chinese National Research Fund(NSFC)No.62172189 and 61772235Natural Science Foundation of Guangdong Province No.2020A1515010771Science and Technology Program of Guangzhou No.202002030372.
文摘Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability and complexity.In recent years,Segment Routing(SR)has emerged as a promising source routing paradigm.As one of the most important applications of SR,Segment Routing Traffic Engineering(SR-TE),which enables a headend to steer traffic along specific paths represented as ordered lists of instructions called segment lists,has the capability to overcome the above challenges due to its flexibility and scalability.In this paper,we conduct a comprehensive survey on SR-TE.A thorough review of SR-TE architecture is provided in the first place,reviewing the core components and implementation of SR-TE such as SR Policy,Flexible Algorithm and SR-native algorithm.Strengths of SR-TE are also discussed,as well as its major challenges.Next,we dwell on the recent SR-TE researches on routing optimization with various intents,e.g.,optimization on link utilization,throughput,QoE(Quality of Experience)and energy consumption.Afterwards,node management for SR-TE are investigated,including SR node deployment and candidate node selection.Finally,we discuss the existing challenges of current research activities and propose several research directions worth of future exploration.
文摘Based on traffic engineering, the network topology is described with network graph. An algorithm for the derivation of data communication capability in network links and the analysis of connectivity performance between node pairs is given through standardized transformation of the original descriptive matrix for the link performance, and resolution of transitive closure for adjacent-incident matrix of network in view of randomness of network events, which provides a feasible way for analysis and improvement of network performance.
文摘An approach to traffic engineering that uses differentiated services (DS) andmulti-protocol label switching (MPLS) to provide quantitative network quality of service (QoS)guarantees over an IP network was proposed. The traffic associated with assured forwarding (AF)Per-Hop behavior (PHB) in differentiated services enabled IP network was modeled. Furthermore, theeffect of such traffic on network resources with die objective of developing efficient trafficengineering methodologies was analyzed and the optimization problem relating to traffic engineeringin DS networks with an MPLS core was formulated. The service received by TCP and UDP flows when theyshare either a link or a MPLS traffic trunk was also compared and found that in order to benefitfrom traffic engineering, MPLS trunks should be implemented end-end (first router to last router).If some part of the network is MPLS trunk-unaware, the benefits are reduced or eliminated.
基金National Key Lab of Broad Band Fiber Transmission and Communication System Technology , Ministry ofEducation
文摘General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.
基金partly supported by NSFC under grant No.61371191 and No.61472389
文摘The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.
文摘Nowadays the number of cores that are integrated into NoC (Network on Chip) systems is steadily increasing, and real application traffic, running in such multi-core environments requires more and more bandwidth. In that sense, NoC architectures should be properly designed so as to provide efficient traffic engineering, as well as QoS support. Routing algorithm choice in conjunction with other parameters, such as network size and topology, traffic features (time and spatial distribution), as well as packet injection rate, packet size, and buffering capability, are all equivalently critical for designing a robust NoC architecture, on the grounds of traffic engineering and QoS provision. In this paper, a thorough numerical investigation is achieved by taking into consideration the criticality of selecting the proper routing algorithm, in conjunction with all the other aforementioned parameters. This is done via implementation of four routing evaluation traffic scenarios varying each parameter either individually, or as a set, thus exhausting all possible combinations, and making compact decisions on proper routing algorithm selection in NoC architectures. It has been shown that the simplicity of a deterministic routing algorithm such as XY, seems to be a reasonable choice, not only for random traffic patterns but also for non-uniform distributed traffic patterns, in terms of delay and throughput for 2D mesh NoC systems.
基金Supported by the National Natural Science Foundation of China(Nos. 60625201,60873250,and 60903182)the National High-Tech Research and Development (863) Program of China(No.2007AA01Z216)+2 种基金the National Key Basic Research and Development (973) Program of China(No. 2007CB310701)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No. 20060003058)the China Scholarship Council(No.2008621056)
文摘As a promising approach to improve network reliability, proactive failure recovery (PFR) re-routes failure affected traffic to backup paths without waiting for the completion of IP routing convergence. However the failure affected traffic may cause congestion if it is not carefully allocated over the backup paths according to their available capacity. A post failure traffic engineering (PostTE) scheme is proposed to balance the load in the PFR scheme. Loop-free backup paths are prepared in advance to cover all the potential single-link failures. The failure affected load is locally allocated to the backup paths through solving a linear programming (LP) problem. Most of the time, the maximum link utilization (MLU) of the network is minimized under both the failure and failure-free cases. For the tested education networks, the LP problem can be solved within milliseconds.
基金The National Basic Research Program of China(973 Program)(No.2006CB705505)the Basic Scientific Research Fund of Jilin University(No.200903209)
文摘Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.
基金Project(61104164)supported by the National Natural Science Foundation of ChinaProject(2012AA112401)supported by the National High Technology Research and Development Program of ChinaProject(2012YJS059)supported by the Fundamental Research Funds for the Central Universities of China
文摘With the wide applications of sensor network technology in traffic information acquisition systems,a new measure will be quite necessary to evaluate spatially related properties of traffic information credibility.The heterogeneity of spatial distribution of information credibility from sensor networks is analyzed and a new measure,information credibility function(ICF),is proposed to describe this heterogeneity.Three possible functional forms of sensor ICF and their corresponding expressions are presented.Then,two feasible operations of spatial superposition of sensor ICFs are discussed.Finally,a numerical example is introduced to show the calibration method of sensor ICF and obtain the spatially related properties of expressway in Beijing.The results show that the sensor ICF of expressway in Beijing possesses a negative exponent property.The traffic information is more abundant at or near the locations of sensor,while with the distance away from the sensor increasing,the traffic information credibility will be declined by an exponential trend.The new measure provides theoretical bases for the optimal locations of traffic sensor networks and the mechanism research of spatial distribution of traffic information credibility.
基金Project(2012CB725402)supported by the State Key Development Program for Basic Research of ChinaProject(2012MS21175)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(Bsh1202056)supported by the Excellent Postdoctoral Science Foundation of Zhejiang Province,China
文摘Traffic jam in large signalized road network presents a complex nature.In order to reveal the jam characteristics,two indexes,SVS(speed of virtual signal) and VOS(velocity of spillover),were proposed respectively.SVS described the propagation of queue within a link while VOS reflected the spillover velocity of vehicle queue.Based on the two indexes,network jam simulation was carried out on a regular signalized road network.The simulation results show that:1) The propagation of traffic congestion on a signalized road network can be classified into two stages:virtual split driven stage and flow rate driven stage.The former stage is characterized by decreasing virtual split while the latter only depends on flow rate; 2) The jam propagation rate and direction are dependent on traffic demand distribution and other network parameters.The direction with higher demand gets more chance to be jammed.Our findings can serve as the basis of the prevention of the formation and propagation of network traffic jam.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
基金support from the National Natural Science Foundation of China(No.41941018,No.52074299)the Fundamental Research Funds for the Central Universities(No.2023JCCXSB02)the China Geological Survey Project(DD20221816,DD20211376)are gratefully acknowledged.
文摘To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.
基金The National Natural Science Foundation of China(No.50908051)
文摘The effects of socio-demographics, land use characteristics and trip attributes on the commute mode choice are studied with a nested logit (NL) model. Based on the random utility maximum theory, the NL model is formulated. The analysis is carried out in the main area of Nanjing. Direct and cross elasticities are calculated to analyze the effects of travel time and travel cost on the selection of travel mode choice. The results reveal that the non-motorized travel modes are more attractive in the areas with higher housing and employment accessibility and car owners are found to be more likely to commute to work by car. The bus and subway choice probabilities are more sensitive to changes in travel times than to changes in travel costs. In conclusion, a comprehensive public transit system and effective integration of land use and transportation policies help to relieve the traffic congestion levels caused by the increasing urban sprawl.
基金The National Basic Research Program of China(973 Program)(No.2012CB725402)the National Natural Science Foundation of China(No.50978057)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX12_0108)
文摘The common phenomenon of uneven headway in bus service is explored based on the automatic vehicle location (AVL) data of Route 2 in Yichun City of Jiangxi province from 6:00 to 9:00 in the morning. The headway regularity of two stages 6: 00--7:00 and 7: 00--9:00 is comparatively analyzed, and it is found that both the traffic conditions and the passenger demand affect headway regularity. A bus arrival model, which assumes that the dwell time of a bus is linear in headway, is built to probe the effect of scheduled headway, and the model is simulated by Matlab. The simulation results reveal that the departure intervals and fluctuations affect headway regularity. Longer intervals and less fluctuation mean higher regularity of headway. And, the fluctuation has a more obvious influence on headway regularity than the interval. Controlling the fluctuations of scheduled headway can effectively raise the regularity of headway and improve the level of public transport service.
基金The Natural Science Foundation of Hebei Province(No.E2013202228)the Science and Technology Planning Project of the Department of Transportation of Hebei Province(No.R070245)
文摘To alleviate the resulting increase in energy consumption and emissions and other issues caused by the traffic congestion ahead of the expressway toll station, a novel traffic flowcontrol method is put forward based on the environment-friendly conception. The technical thinking of inducing the slowly moving traffic into a batch pass is determined based on the conclusion of the research, traffic flowtheory and traffic sensing detection technology. The model of stop times is established and the parameters of the system are optimized in accordance with the principle of minimizing the fuel consumption. The optimal location selection of traffic control lights and Detector 2 for queue of different lengths at toll stations are calculated based on the model. Finally, the effect of the congestion flowcontrol system is verified via the Paramics simulation system. The result shows that the control system is capable of reducing90% of fuel consumption for vehicles going through toll stations.