A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simp...A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.展开更多
Connected and automated vehicles(CAVs)are expected to reshape traffic flow dynamics and present new challenges and opportunities for traffic flow modeling.While numerous studies have proposed optimal modeling and cont...Connected and automated vehicles(CAVs)are expected to reshape traffic flow dynamics and present new challenges and opportunities for traffic flow modeling.While numerous studies have proposed optimal modeling and control strategies for CAVs with various objectives(e.g.,traffic efficiency and safety),there are uncertainties about the flow dynamics of CAVs in real-world traffic.The uncertainties are especially amplified for mixed traffic flows,consisting of CAVs and human-driven vehicles,where the implications can be significant from the continuum-modeling perspective,which aims to capture macroscopic traffic flow dynamics based on hyperbolic systems of partial differential equations.This paper aims to highlight and discuss some essential problems in continuum modeling of real-world freeway traffic flows in the era of CAVs.We first provide a select review of some existing continuum models for conventional human-driven traffic as well as the recent attempts for incorporating CAVs into the continuum-modeling framework.Wherever applicable,we provide new insights about the properties of existing models and revisit their implications for traffic flows of CAVs using recent empirical observations with CAVs and the previous discussions and debates in the literature.The paper then discusses some major problems inherent to continuum modeling of real-world(mixed)CAV traffic flows modeling by distinguishing between two major research directions:(a)modeling for explaining purposes,where making reproducible inferences about the physical aspects of macroscopic properties is of the primary interest,and(b)modeling for practical purposes,in which the focus is on the reliable predictions for operation and control.The paper proposes some potential solutions in each research direction and recommends some future research topics.展开更多
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi...With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.展开更多
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc...A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.展开更多
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c...VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.展开更多
This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissio...This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.展开更多
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of...Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.展开更多
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial...Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.展开更多
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with...Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.展开更多
In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the mode...In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the model considers the level of total traffic flow the variability of link flows and the violation of the conservation law.Using prior link flows the prior distribution of all the variables is determined. By updating some observed link flows the posterior distribution is given.The variances of the posterior distribution normally decrease with the progressive update of the link flows. Based on the posterior distribution point estimations and the corresponding probability intervals are provided. To remove inconsistencies in OD matrices estimation and traffic assignment a combined BN and stochastic user equilibrium model is proposed in which the equilibrium solution is obtained through iterations.Results of the numerical example demonstrate the efficiency of the proposed BN model and the combined method.展开更多
The prediction of regional traffic flows is important for traffic control and management in an intelligent traffic system.With the help of deep neural networks,the convolutional neural network or residual neural netwo...The prediction of regional traffic flows is important for traffic control and management in an intelligent traffic system.With the help of deep neural networks,the convolutional neural network or residual neural network,which can be applied only to regular grids,is adopted to capture the spatial dependence for flow prediction.However,the obtained regions are always irregular considering the road network and administrative boundaries;thus,dividing the city into grids is inaccurate for prediction.In this paper,we propose a new model based on multi-graph convolutional network and gated recurrent unit(MGCN-GRU)to predict traffic flows for irregular regions.Specifically,we first construct heterogeneous inter-region graphs for a city to reflect the rela-tionships among regions.In each graph,nodes represent the irregular regions and edges represent the relationship types between regions.Then,we propose a multi-graph convolutional network to fuse different inter-region graphs and additional attributes.The GRU is further used to capture the temporal dependence and to predict future traffic flows.Experimental results based on three real-world large-scale datasets(public bicycle system dataset,taxi dataset,and dockless bike-sharing dataset)show that our MGCN-GRU model outperforms a variety of existing methods.展开更多
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo...Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.展开更多
Traffic flow prediction is an effective strategy to assess traffic conditions and alleviate traffic congestion. Influenced by external non-stationary factors and road network structure, traffic flow sequences have mac...Traffic flow prediction is an effective strategy to assess traffic conditions and alleviate traffic congestion. Influenced by external non-stationary factors and road network structure, traffic flow sequences have macro spatiotemporal characteristics and micro chaotic characteristics. The key to improving the model prediction accuracy is to fully extract the macro and micro characteristics of traffic flow time sequences. However, traditional prediction model by only considers time features of traffic data, ignoring spatial characteristics and nonlinear characteristics of the data itself, resulting in poor model prediction performance. In view of this, this research proposes an intelligent combination prediction model taking into account the macro and micro features of chaotic traffic data. Firstly, to address the problem of time-consuming and inefficient multivariate phase space reconstruction by iterating nodes one by one, an improved multivariate phase space reconstruction method is proposed by filtering global representative nodes to effectively realize the high-dimensional mapping of chaotic traffic flow. Secondly, to address the problem that the traditional combinatorial model is difficult to adequately learn the macro and micro characteristics of chaotic traffic data, a combination of convolutional neural network(CNN) and convolutional long short-term memory(ConvLSTM) is utilized for capturing nonlinear features of traffic flow more comprehensively. Finally,to overcome the challenge that the combined model performance degrades due to subjective empirical determined network parameters, an improved lightweight particle swarm is proposed for improving prediction accuracy by optimizing model hyperparameters. In this paper, two highway datasets collected by the Caltrans Performance Measurement System(PeMS)are taken as the research objects, and the experimental results from multiple perspectives show that the comprehensive performance of the method proposed in this research is superior to those of the prevalent methods.展开更多
To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based ...To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy.展开更多
Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in ...Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in this field.This article first introduces the research on traffic flow prediction and the challenges it currently faces.It then proposes a classification method for literature,discussing and analyzing existing research on using machine learning methods to address traffic flow prediction from the perspectives of the prediction preparation process and the construction of prediction models.The article also summarizes innovative modules in these models.Finally,we provide improvement strategies for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future.展开更多
This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic r...This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.展开更多
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil...Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.展开更多
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d...Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.展开更多
文摘A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
基金partially funded by the Australian Research Council(ARC)through the Discovery Project(DP210102970)Dr.Zuduo Zheng's Discovery Early Career Researcher Award(DECRADE160100449).
文摘Connected and automated vehicles(CAVs)are expected to reshape traffic flow dynamics and present new challenges and opportunities for traffic flow modeling.While numerous studies have proposed optimal modeling and control strategies for CAVs with various objectives(e.g.,traffic efficiency and safety),there are uncertainties about the flow dynamics of CAVs in real-world traffic.The uncertainties are especially amplified for mixed traffic flows,consisting of CAVs and human-driven vehicles,where the implications can be significant from the continuum-modeling perspective,which aims to capture macroscopic traffic flow dynamics based on hyperbolic systems of partial differential equations.This paper aims to highlight and discuss some essential problems in continuum modeling of real-world freeway traffic flows in the era of CAVs.We first provide a select review of some existing continuum models for conventional human-driven traffic as well as the recent attempts for incorporating CAVs into the continuum-modeling framework.Wherever applicable,we provide new insights about the properties of existing models and revisit their implications for traffic flows of CAVs using recent empirical observations with CAVs and the previous discussions and debates in the literature.The paper then discusses some major problems inherent to continuum modeling of real-world(mixed)CAV traffic flows modeling by distinguishing between two major research directions:(a)modeling for explaining purposes,where making reproducible inferences about the physical aspects of macroscopic properties is of the primary interest,and(b)modeling for practical purposes,in which the focus is on the reliable predictions for operation and control.The paper proposes some potential solutions in each research direction and recommends some future research topics.
基金Project supported by the Fundamental Research Funds for Central Universities,China(Grant No.2022YJS065)the National Natural Science Foundation of China(Grant Nos.72288101 and 72371019).
文摘With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.
文摘A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.
文摘VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.52172314)the Natural Science Foundation of Liaoning Province,China(Grant No.2022-MS-150)the Special Funding Project of Taishan Scholar Engineering.
文摘This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.
基金supported by the National Natural Science Foundation of China(Grant:62176086).
文摘Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
基金the National Natural Science Foundation of China under Grant No.62272087Science and Technology Planning Project of Sichuan Province under Grant No.2023YFG0161.
文摘Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
文摘Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.
基金The National Natural Science Foundation of China(No.51078085,51178110)
文摘In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the model considers the level of total traffic flow the variability of link flows and the violation of the conservation law.Using prior link flows the prior distribution of all the variables is determined. By updating some observed link flows the posterior distribution is given.The variances of the posterior distribution normally decrease with the progressive update of the link flows. Based on the posterior distribution point estimations and the corresponding probability intervals are provided. To remove inconsistencies in OD matrices estimation and traffic assignment a combined BN and stochastic user equilibrium model is proposed in which the equilibrium solution is obtained through iterations.Results of the numerical example demonstrate the efficiency of the proposed BN model and the combined method.
基金the National Natural Science Foundation of China(No.61903109)the Zhejiang Provincial Natural Science Foundation of China(No.LY19F030021)。
文摘The prediction of regional traffic flows is important for traffic control and management in an intelligent traffic system.With the help of deep neural networks,the convolutional neural network or residual neural network,which can be applied only to regular grids,is adopted to capture the spatial dependence for flow prediction.However,the obtained regions are always irregular considering the road network and administrative boundaries;thus,dividing the city into grids is inaccurate for prediction.In this paper,we propose a new model based on multi-graph convolutional network and gated recurrent unit(MGCN-GRU)to predict traffic flows for irregular regions.Specifically,we first construct heterogeneous inter-region graphs for a city to reflect the rela-tionships among regions.In each graph,nodes represent the irregular regions and edges represent the relationship types between regions.Then,we propose a multi-graph convolutional network to fuse different inter-region graphs and additional attributes.The GRU is further used to capture the temporal dependence and to predict future traffic flows.Experimental results based on three real-world large-scale datasets(public bicycle system dataset,taxi dataset,and dockless bike-sharing dataset)show that our MGCN-GRU model outperforms a variety of existing methods.
基金Supported by Universitas Muhammadiyah Yogyakarta,Indonesia and Asia University,Taiwan.
文摘Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62063014)the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA365)。
文摘Traffic flow prediction is an effective strategy to assess traffic conditions and alleviate traffic congestion. Influenced by external non-stationary factors and road network structure, traffic flow sequences have macro spatiotemporal characteristics and micro chaotic characteristics. The key to improving the model prediction accuracy is to fully extract the macro and micro characteristics of traffic flow time sequences. However, traditional prediction model by only considers time features of traffic data, ignoring spatial characteristics and nonlinear characteristics of the data itself, resulting in poor model prediction performance. In view of this, this research proposes an intelligent combination prediction model taking into account the macro and micro features of chaotic traffic data. Firstly, to address the problem of time-consuming and inefficient multivariate phase space reconstruction by iterating nodes one by one, an improved multivariate phase space reconstruction method is proposed by filtering global representative nodes to effectively realize the high-dimensional mapping of chaotic traffic flow. Secondly, to address the problem that the traditional combinatorial model is difficult to adequately learn the macro and micro characteristics of chaotic traffic data, a combination of convolutional neural network(CNN) and convolutional long short-term memory(ConvLSTM) is utilized for capturing nonlinear features of traffic flow more comprehensively. Finally,to overcome the challenge that the combined model performance degrades due to subjective empirical determined network parameters, an improved lightweight particle swarm is proposed for improving prediction accuracy by optimizing model hyperparameters. In this paper, two highway datasets collected by the Caltrans Performance Measurement System(PeMS)are taken as the research objects, and the experimental results from multiple perspectives show that the comprehensive performance of the method proposed in this research is superior to those of the prevalent methods.
基金Supported by Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NJYT23060).
文摘To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy.
基金supported by 2022 Shenyang Philosophy and Social Science Planning under grant SY202201Z,Liaoning Provincial Department of Education Project under grant LJKZ0588.
文摘Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in this field.This article first introduces the research on traffic flow prediction and the challenges it currently faces.It then proposes a classification method for literature,discussing and analyzing existing research on using machine learning methods to address traffic flow prediction from the perspectives of the prediction preparation process and the construction of prediction models.The article also summarizes innovative modules in these models.Finally,we provide improvement strategies for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future.
基金Project supported in part by the Fundamental Research Funds for the Central Universities (Grant No.2021JBZ107)the National Natural Science Foundation of China (Grant Nos.72288101 and 71931002)。
文摘This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.
文摘Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.
基金supported by the National Natural Science Foundation of China (Grant Nos.71901134&51878165)the National Science Foundation for Distinguished Young Scholars (Grant No.51925801).
文摘Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.