A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of...A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.展开更多
The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street ligh...The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.展开更多
文摘A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.
文摘The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.