Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model c...The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands.展开更多
To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-...To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric rout...Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric routing protocols have been suggested in literature for road safety ITS applications considering urban and highway traffic environment. This paper characterizes vehicular environments based on real traffic data and investigates the evolution of location-centric data dissemination. The current study is carded out with three main objectives: (i) to analyze the impact of dynamic traffic environment on the design of data dissemination techniques, (ii) to characterize location-centric data dissemination in terms of functional and qualitative behavior of protocols, properties, and strengths and weaknesses, and (iii) to find some future research directions in information dissemination based on location. Vehicular traffic environments have been classified into three categories based on physical characteristics such as speed, inter-vehicular distance, neighborhood stability, traffic volume, etc. Real traffic data is considered to analyze on-road traffic environments based on the measurement of physical parameters and weather conditions. Design issues are identified in incorporating physical parameters and weather conditions into data dissemination. Functional and qualitative characteristics of location-centric techniques are explored considering urban and highway environments. Comparative analysis of location-centric techniques is carded out for both urban and highway environments individually based on some unique and common characteristics of the environments. Finally, some future research directions are identified in the area based on the detailed investigation of traffic environments and location-centric data dissemination techniques.展开更多
With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology...With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology to support the full exploitation and utilization of airspace resources.This paper proposes a method of designing corridor,identifying congestion state,and analyzing the influence of air routes’traffic flow.From this,we have reached a number of conclusions.(1)The congestion periods present the multi-peak"wavy"scattered distributions and the peaks back-end agglomeration characteristics in the whole day.(2)The congestion segments present the structural characteristics of unbalanced coverage and concentrated distribution to the crossing points.The corridors with high congestion level present as an italic"N-shaped"frame,which presents incomplete penetration of short segments.(3)For the temporal and spatial interaction,there are two types of congestion segments,and there are some common congestion periods in different congestion segments of multiple corridors.The high-density air route plays a relatively decisive role in corridor congestion,and the influence of two directions is unbalanced.This research can provide a basis for the dynamic evaluation of China’s airspace resources and corridors construction in the future.展开更多
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
文摘The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.61233003)National Natural Science Foundation of China(Grant No.61503358)
文摘To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
文摘Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric routing protocols have been suggested in literature for road safety ITS applications considering urban and highway traffic environment. This paper characterizes vehicular environments based on real traffic data and investigates the evolution of location-centric data dissemination. The current study is carded out with three main objectives: (i) to analyze the impact of dynamic traffic environment on the design of data dissemination techniques, (ii) to characterize location-centric data dissemination in terms of functional and qualitative behavior of protocols, properties, and strengths and weaknesses, and (iii) to find some future research directions in information dissemination based on location. Vehicular traffic environments have been classified into three categories based on physical characteristics such as speed, inter-vehicular distance, neighborhood stability, traffic volume, etc. Real traffic data is considered to analyze on-road traffic environments based on the measurement of physical parameters and weather conditions. Design issues are identified in incorporating physical parameters and weather conditions into data dissemination. Functional and qualitative characteristics of location-centric techniques are explored considering urban and highway environments. Comparative analysis of location-centric techniques is carded out for both urban and highway environments individually based on some unique and common characteristics of the environments. Finally, some future research directions are identified in the area based on the detailed investigation of traffic environments and location-centric data dissemination techniques.
基金National Natural Science Foundation of China,No.41671121
文摘With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology to support the full exploitation and utilization of airspace resources.This paper proposes a method of designing corridor,identifying congestion state,and analyzing the influence of air routes’traffic flow.From this,we have reached a number of conclusions.(1)The congestion periods present the multi-peak"wavy"scattered distributions and the peaks back-end agglomeration characteristics in the whole day.(2)The congestion segments present the structural characteristics of unbalanced coverage and concentrated distribution to the crossing points.The corridors with high congestion level present as an italic"N-shaped"frame,which presents incomplete penetration of short segments.(3)For the temporal and spatial interaction,there are two types of congestion segments,and there are some common congestion periods in different congestion segments of multiple corridors.The high-density air route plays a relatively decisive role in corridor congestion,and the influence of two directions is unbalanced.This research can provide a basis for the dynamic evaluation of China’s airspace resources and corridors construction in the future.