Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of h...Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.展开更多
现有的网络安全态势评估方法没有考虑到工业控制系统(industrial control system,ICS)网络安全需求的特殊性,无法实现准确的评估。此外,ICS传输大量异构数据,容易受到网络攻击,现有的分类方法无法有效处理多类别不平衡数据。针对该问题...现有的网络安全态势评估方法没有考虑到工业控制系统(industrial control system,ICS)网络安全需求的特殊性,无法实现准确的评估。此外,ICS传输大量异构数据,容易受到网络攻击,现有的分类方法无法有效处理多类别不平衡数据。针对该问题,本文首先分析了工控系统的特点,提出了基于层次分析法的工控系统安全态势量化评估方法,该方法可以更准确地反映ICS网络安全状况;然后针对多攻击类型数据不平衡问题,提出了平均欠过采样方法,以平衡数据并且不会导致数据量过大;最后基于极限梯度提升(extreme gradient boosting,XGBoost)算法构建了ICS网络态势评估分类器,实验表明,本文设计的分类模型相较于传统分类算法支持向量机、K近邻以及随机森林可以实现更好的精度。展开更多
文摘Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.
文摘现有的网络安全态势评估方法没有考虑到工业控制系统(industrial control system,ICS)网络安全需求的特殊性,无法实现准确的评估。此外,ICS传输大量异构数据,容易受到网络攻击,现有的分类方法无法有效处理多类别不平衡数据。针对该问题,本文首先分析了工控系统的特点,提出了基于层次分析法的工控系统安全态势量化评估方法,该方法可以更准确地反映ICS网络安全状况;然后针对多攻击类型数据不平衡问题,提出了平均欠过采样方法,以平衡数据并且不会导致数据量过大;最后基于极限梯度提升(extreme gradient boosting,XGBoost)算法构建了ICS网络态势评估分类器,实验表明,本文设计的分类模型相较于传统分类算法支持向量机、K近邻以及随机森林可以实现更好的精度。
文摘为提高高速公路改扩建工程交通安全风险评估结果的确定性和准确性,建立了基于改进D-S证据理论的相关风险评估模型。首先建立包含24个影响因素的三层级评估指标体系;然后利用云模型(Cloud Model,CM)求出定性指标的基本信度赋值(Basic Probability Assignment,BPA),利用高斯隶属度函数求出定量指标BPA;接着,通过层次分析法确定各评估指标的权重,进而对各指标BPA进行加权;利用D-S证据理论融合加权后的BPA,归一化处理后得到改扩建工程交通安全风险状态评估结果。最后,为验证模型的准确性,选取沪陕高速公路平潮至广陵段高速公路改扩建工程作为实例进行交通安全风险评估。评估结果显示,实例工程的低风险水平隶属度最大,为0.6615,表明该实例总体处于低风险水平,与现有资料和现实情况吻合。同时发现,基于CM、AHP及D-S证据理论的评估模型对各评估指标进行量化、加权、融合后所得到的风险等级隶属度和不确定性有所区别,能更均衡地表示风险的隶属度,量化后的安全风险状态评估结果具有更好的准确性,解决了指标体系中模糊定性指标难以量化表征及指标差异化权重赋值的难题。