As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bu...As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50379015)the Major Science and Technology Projects in Zhejiang province(Grant No.2008C11057)
文摘As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.