Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
为研究设备可用度对列车控制中心(TCC,Train Control Center)的影响和预测TCC的剩余使用寿命(RUL,Remaining Useful Life),降低TCC的故障发生率,确保车辆安全运行,构建TCC动态故障树模型。通过引入Markov理论,将其转化为Markov模型,设计...为研究设备可用度对列车控制中心(TCC,Train Control Center)的影响和预测TCC的剩余使用寿命(RUL,Remaining Useful Life),降低TCC的故障发生率,确保车辆安全运行,构建TCC动态故障树模型。通过引入Markov理论,将其转化为Markov模型,设计了TCC可用度评估与RUL预测方法;考虑了TCC的失效率和共因失效,利用D-S(Dempster-Shafer)证据理论对失效数据作数据融合处理,得到TCC设备初始故障区间概率;在此基础上,采用超椭球模型约束设备初始故障区间概率,得到更加精确的底事件故障区间概率;画出Markov状态转移图,用矩阵推导出TCC可用度和RUL的函数关系式,且对可用度的计算还考虑了维修因素。以兰州—乌鲁木齐客运专线某TCC数据作为分析案例,用该方法计算TCC及其各设备的可用度,并预测TCC的RUL。结果表明:与通用方法相比,评估结果相同,但评估信息更丰富。展开更多
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
文摘为研究设备可用度对列车控制中心(TCC,Train Control Center)的影响和预测TCC的剩余使用寿命(RUL,Remaining Useful Life),降低TCC的故障发生率,确保车辆安全运行,构建TCC动态故障树模型。通过引入Markov理论,将其转化为Markov模型,设计了TCC可用度评估与RUL预测方法;考虑了TCC的失效率和共因失效,利用D-S(Dempster-Shafer)证据理论对失效数据作数据融合处理,得到TCC设备初始故障区间概率;在此基础上,采用超椭球模型约束设备初始故障区间概率,得到更加精确的底事件故障区间概率;画出Markov状态转移图,用矩阵推导出TCC可用度和RUL的函数关系式,且对可用度的计算还考虑了维修因素。以兰州—乌鲁木齐客运专线某TCC数据作为分析案例,用该方法计算TCC及其各设备的可用度,并预测TCC的RUL。结果表明:与通用方法相比,评估结果相同,但评估信息更丰富。