The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of...The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of the virus in the metropolitan train lines in Japan. First of all, the result of the present study clearly revealed the changes in contributing factors for train delays caused by the spread of COVID-19. Specifically, the contributing factors for train delays changed due to the decrease of passengers by the effect of the outbreak of the virus. Additionally, though large terminal stations were considered to be a major contributing factor in causing and increasing train delays in the past, this was not the case after the spread of COVID-19. Therefore, under such conditions, it is more effective to make improvements in small to medium stations and tracks rather than terminal stations. Furthermore, as the decrease in passengers also decreased train delays in commuter lines going to the suburbs due to the spread of COVID-19, the contributing factor for such lines is the excessive number of passengers. Therefore, as for countermeasures for train delays after the effects of COVID-19, it is necessary to disperse passengers in order to avoid passengers concentrating in the same time zones and train lines.展开更多
According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to i...According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.展开更多
The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, t...The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.展开更多
文摘The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of the virus in the metropolitan train lines in Japan. First of all, the result of the present study clearly revealed the changes in contributing factors for train delays caused by the spread of COVID-19. Specifically, the contributing factors for train delays changed due to the decrease of passengers by the effect of the outbreak of the virus. Additionally, though large terminal stations were considered to be a major contributing factor in causing and increasing train delays in the past, this was not the case after the spread of COVID-19. Therefore, under such conditions, it is more effective to make improvements in small to medium stations and tracks rather than terminal stations. Furthermore, as the decrease in passengers also decreased train delays in commuter lines going to the suburbs due to the spread of COVID-19, the contributing factor for such lines is the excessive number of passengers. Therefore, as for countermeasures for train delays after the effects of COVID-19, it is necessary to disperse passengers in order to avoid passengers concentrating in the same time zones and train lines.
文摘According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.
文摘The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.