Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
The continuously booming of information technology has shed light on developing a variety of communication networks,multimedia,social networks and Internet of Things applications.However,users inevitably suffer from t...The continuously booming of information technology has shed light on developing a variety of communication networks,multimedia,social networks and Internet of Things applications.However,users inevitably suffer from the intrusion of malicious users.Some studies focus on static characteristics of malicious users,which is easy to be bypassed by camouflaged malicious users.In this paper,we present a malicious user detection method based on ensemble feature selection and adversarial training.Firstly,the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance.Secondly,we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference.Thirdly,we use an effective ensemble learning which could avoid over-fitting and has good noise resistance.Finally,we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics.It simplifies the parameters,obtaining more robust interaction features and pattern features.We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection,where the robustness issues are notable concerns.展开更多
Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-c...Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness.展开更多
The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method...The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.展开更多
AIM To investigate changes in polyp detection throughout fellowship training, and estimate colonoscopy volume required to achieve the adenoma detection rate(ADRs) and polyp detection rate(PDRs) of attending gastroente...AIM To investigate changes in polyp detection throughout fellowship training, and estimate colonoscopy volume required to achieve the adenoma detection rate(ADRs) and polyp detection rate(PDRs) of attending gastroenterologists.METHODS We reviewed colonoscopies from July 1, 2009 to June 30, 2014. Fellows' procedural logs were used to retrieve colonoscopy procedural volumes, and these were treated as the time variable. Findings from screening colonoscopies were used to calculate colonoscopy outcomes for each fellow for the prior 50 colonoscopies at each time point. ADR and PDR were plotted against colonoscopy procedural volumes to produce individual longitudinal graphs. Repeated measures linear mixed effects models were used to study the change of ADR and PDR with increasing procedural volume.RESULTS During the study period, 12 fellows completed full three years of training and were included in the analysis. The average ADR and PDR were, respectively, 31.5% and 41.9% for all fellows, and 28.9% and 38.2% for attendings alone. There was a statistically significant increase in ADR with increasing procedural volume(1.8%/100 colonoscopies, P = 0.002). Similarly, PDR increased 2.8%/100 colonoscopies(P = 0.0001), while there was no significant change in advanced ADR(0.04%/100 colonoscopies, P = 0.92). The ADR increase was limited to the right side of the colon, while the PDR increased in both the right and left colon. The adenoma per colon and polyp per colon also increased throughout training. Fellows reached the attendings' ADR and PDR after 265 and 292 colonoscopies, respectively.CONCLUSION We found that the ADR and PDR increase with increasing colonoscopy volume throughout fellowship. Our findings support recent recommendations of ≥ 275 colonoscopies for colonoscopy credentialing.展开更多
Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,i...Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,in case of adversarial attacks,that cause misclassification by introducing imperceptible perturbation on input samples,performance of machine learning-based intrusion detection systems is greatly affected.Though such problems have widely been discussed in image processing domain,very few studies have investigated network intrusion detection systems and proposed corresponding defence.In this paper,we attempt to fill this gap by using adversarial attacks on standard intrusion detection datasets and then using adversarial samples to train various machine learning algorithms(adversarial training)to test their defence performance.This is achieved by first creating adversarial sample based on Jacobian-based Saliency Map Attack(JSMA)and Fast Gradient Sign Attack(FGSM)using NSLKDD,UNSW-NB15 and CICIDS17 datasets.The study then trains and tests JSMA and FGSM based adversarial examples in seen(where model has been trained on adversarial samples)and unseen(where model is unaware of adversarial packets)attacks.The experiments includes multiple machine learning classifiers to evaluate their performance against adversarial attacks.The performance parameters include Accuracy,F1-Score and Area under the receiver operating characteristic curve(AUC)Score.展开更多
Purpose-For billing purposes,heavy-haul locomotives in Sweden are equipped with on-board energy meters,which can record several parameters,e.g.,used energy,regenerated energy,speed and position.Since there is a strong...Purpose-For billing purposes,heavy-haul locomotives in Sweden are equipped with on-board energy meters,which can record several parameters,e.g.,used energy,regenerated energy,speed and position.Since there is a strong demand for improving energy efficiency in Sweden,data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.Design/methodology/approach-To monitor energy efficiency,the present study,therefore,develops key performance indicators(KPIs),which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation.Energy meter data of IORE class locomotives,hauling highly uniform 30-tonne axle load trains with 68 wagons,together with additional data sources,are analysed to identify significant parameters for describing driver influence on energy usage.Findings-Results show that driver behaviour varies significantly and has the single largest influence on energy usage.Furthermore,parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions,e.g.,axle loads and number of wagons,on energy usage.Originality/value-Based on the parametric studies,some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived.In the end,some possible measures for improving energy performance in heavy-haul operations are given.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
To investigate whether adenoma and polyp detection rates (ADR and PDR, respectively) in screening colonoscopies performed in the presence of fellows differ from those performed by attending physicians alone. METHODSWe...To investigate whether adenoma and polyp detection rates (ADR and PDR, respectively) in screening colonoscopies performed in the presence of fellows differ from those performed by attending physicians alone. METHODSWe performed a retrospective review of all patients who underwent a screening colonoscopy at Grady Memorial Hospital between July 1, 2009 and June 30, 2015. Patients with a history of colon polyps or cancer and those with poor colon preparation or failed cecal intubation were excluded from the analysis. Associations of fellowship training level with the ADR and PDR relative to attendings alone were assessed using unconditional multivariable logistic regression. Models were adjusted for sex, age, race, and colon preparation quality. RESULTSA total of 7503 colonoscopies met the inclusion criteria and were included in the analysis. The mean age of the study patients was 58.2 years; 63.1% were women and 88.2% were African American. The ADR was higher in the fellow participation group overall compared to that in the attending group: 34.5% vs 30.7% (P = 0.001), and for third year fellows it was 35.4% vs 30.7% (aOR = 1.23, 95%CI: 1.09-1.39). The higher ADR in the fellow participation group was evident for both the right and left side of the colon. For the PDR the corresponding figures were 44.5% vs 40.1% (P = 0.0003) and 45.7% vs 40.1% (aOR = 1.25, 95%CI: 1.12-1.41). The ADR and PDR increased with increasing fellow training level (P for trend < 0.05). CONCLUSIONThere is a stepwise increase in ADR and PDR across the years of gastroenterology training. Fellow participation is associated with higher adenoma and polyp detection.展开更多
Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conve...Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ...This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA.展开更多
The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small ob...The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small objects and objects with obstructions.Therefore,we propose a helmet detection algorithm based on the attention mechanism(AT-YOLO).First of all,a channel attention module is added to the YOLOv3 backbone network,which can adaptively calibrate the channel features of the direction to improve the feature utilization,and a spatial attention module is added to the neck of the YOLOv3 network to capture the correlation between any positions in the feature map so that to increase the receptive field of the network.Secondly,we use DIoU(Distance Intersection over Union)bounding box regression loss function,it not only improving the measurement of bounding box regression loss but also increases the normalized distance loss between the prediction boxes and the target boxes,which makes the network more accurate in detecting small objects and faster in convergence.Finally,we explore the training strategy of the network model,which improves network performance without increasing the inference cost.Experiments show that the mAP of the proposed method reaches 96.5%,and the detection speed can reach 27 fps.Compared with other existing methods,it has better performance in detection accuracy and speed.展开更多
Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice opera...Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.展开更多
In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two came...In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
基金supported in part by projects of National Natural Science Foundation of China under Grant 61772406 and Grant 61941105supported in part by projects of the Fundamental Research Funds for the Central Universitiesthe Innovation Fund of Xidian University under Grant 500120109215456.
文摘The continuously booming of information technology has shed light on developing a variety of communication networks,multimedia,social networks and Internet of Things applications.However,users inevitably suffer from the intrusion of malicious users.Some studies focus on static characteristics of malicious users,which is easy to be bypassed by camouflaged malicious users.In this paper,we present a malicious user detection method based on ensemble feature selection and adversarial training.Firstly,the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance.Secondly,we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference.Thirdly,we use an effective ensemble learning which could avoid over-fitting and has good noise resistance.Finally,we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics.It simplifies the parameters,obtaining more robust interaction features and pattern features.We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection,where the robustness issues are notable concerns.
基金supported by the National Natural Science Foundation of China(NSFC)(U1704158)Henan Province Technologies Research and Development Project of China(212102210103)+1 种基金the NSFC Development Funding of Henan Normal University(2020PL09)the University of Manitoba Research Grants Program(URGP)。
文摘Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness.
基金supported by the National Natural Science Foundation of China(62203431)。
文摘The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.
基金Supported by(in part) National Center for Advancing Translational Sciences of the National Institutes of Health,No.UL1TR000454
文摘AIM To investigate changes in polyp detection throughout fellowship training, and estimate colonoscopy volume required to achieve the adenoma detection rate(ADRs) and polyp detection rate(PDRs) of attending gastroenterologists.METHODS We reviewed colonoscopies from July 1, 2009 to June 30, 2014. Fellows' procedural logs were used to retrieve colonoscopy procedural volumes, and these were treated as the time variable. Findings from screening colonoscopies were used to calculate colonoscopy outcomes for each fellow for the prior 50 colonoscopies at each time point. ADR and PDR were plotted against colonoscopy procedural volumes to produce individual longitudinal graphs. Repeated measures linear mixed effects models were used to study the change of ADR and PDR with increasing procedural volume.RESULTS During the study period, 12 fellows completed full three years of training and were included in the analysis. The average ADR and PDR were, respectively, 31.5% and 41.9% for all fellows, and 28.9% and 38.2% for attendings alone. There was a statistically significant increase in ADR with increasing procedural volume(1.8%/100 colonoscopies, P = 0.002). Similarly, PDR increased 2.8%/100 colonoscopies(P = 0.0001), while there was no significant change in advanced ADR(0.04%/100 colonoscopies, P = 0.92). The ADR increase was limited to the right side of the colon, while the PDR increased in both the right and left colon. The adenoma per colon and polyp per colon also increased throughout training. Fellows reached the attendings' ADR and PDR after 265 and 292 colonoscopies, respectively.CONCLUSION We found that the ADR and PDR increase with increasing colonoscopy volume throughout fellowship. Our findings support recent recommendations of ≥ 275 colonoscopies for colonoscopy credentialing.
文摘Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,in case of adversarial attacks,that cause misclassification by introducing imperceptible perturbation on input samples,performance of machine learning-based intrusion detection systems is greatly affected.Though such problems have widely been discussed in image processing domain,very few studies have investigated network intrusion detection systems and proposed corresponding defence.In this paper,we attempt to fill this gap by using adversarial attacks on standard intrusion detection datasets and then using adversarial samples to train various machine learning algorithms(adversarial training)to test their defence performance.This is achieved by first creating adversarial sample based on Jacobian-based Saliency Map Attack(JSMA)and Fast Gradient Sign Attack(FGSM)using NSLKDD,UNSW-NB15 and CICIDS17 datasets.The study then trains and tests JSMA and FGSM based adversarial examples in seen(where model has been trained on adversarial samples)and unseen(where model is unaware of adversarial packets)attacks.The experiments includes multiple machine learning classifiers to evaluate their performance against adversarial attacks.The performance parameters include Accuracy,F1-Score and Area under the receiver operating characteristic curve(AUC)Score.
文摘Purpose-For billing purposes,heavy-haul locomotives in Sweden are equipped with on-board energy meters,which can record several parameters,e.g.,used energy,regenerated energy,speed and position.Since there is a strong demand for improving energy efficiency in Sweden,data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.Design/methodology/approach-To monitor energy efficiency,the present study,therefore,develops key performance indicators(KPIs),which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation.Energy meter data of IORE class locomotives,hauling highly uniform 30-tonne axle load trains with 68 wagons,together with additional data sources,are analysed to identify significant parameters for describing driver influence on energy usage.Findings-Results show that driver behaviour varies significantly and has the single largest influence on energy usage.Furthermore,parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions,e.g.,axle loads and number of wagons,on energy usage.Originality/value-Based on the parametric studies,some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived.In the end,some possible measures for improving energy performance in heavy-haul operations are given.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
文摘To investigate whether adenoma and polyp detection rates (ADR and PDR, respectively) in screening colonoscopies performed in the presence of fellows differ from those performed by attending physicians alone. METHODSWe performed a retrospective review of all patients who underwent a screening colonoscopy at Grady Memorial Hospital between July 1, 2009 and June 30, 2015. Patients with a history of colon polyps or cancer and those with poor colon preparation or failed cecal intubation were excluded from the analysis. Associations of fellowship training level with the ADR and PDR relative to attendings alone were assessed using unconditional multivariable logistic regression. Models were adjusted for sex, age, race, and colon preparation quality. RESULTSA total of 7503 colonoscopies met the inclusion criteria and were included in the analysis. The mean age of the study patients was 58.2 years; 63.1% were women and 88.2% were African American. The ADR was higher in the fellow participation group overall compared to that in the attending group: 34.5% vs 30.7% (P = 0.001), and for third year fellows it was 35.4% vs 30.7% (aOR = 1.23, 95%CI: 1.09-1.39). The higher ADR in the fellow participation group was evident for both the right and left side of the colon. For the PDR the corresponding figures were 44.5% vs 40.1% (P = 0.0003) and 45.7% vs 40.1% (aOR = 1.25, 95%CI: 1.12-1.41). The ADR and PDR increased with increasing fellow training level (P for trend < 0.05). CONCLUSIONThere is a stepwise increase in ADR and PDR across the years of gastroenterology training. Fellow participation is associated with higher adenoma and polyp detection.
基金supported by the National Natural Science Foundation of China(51705470).
文摘Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by ZTE Corporation and State Key Laboratory of Mobile Network and Mobile Multimedia Technology
文摘This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/+6 种基金in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Graduate Science and Technology Innovation Fund Project of Central South University of Forestry and Technology under Grant CX2020107,author Q.Z,https://jwc.csuft.edu.cn/。
文摘The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements,but they can’t accurately detect small objects and objects with obstructions.Therefore,we propose a helmet detection algorithm based on the attention mechanism(AT-YOLO).First of all,a channel attention module is added to the YOLOv3 backbone network,which can adaptively calibrate the channel features of the direction to improve the feature utilization,and a spatial attention module is added to the neck of the YOLOv3 network to capture the correlation between any positions in the feature map so that to increase the receptive field of the network.Secondly,we use DIoU(Distance Intersection over Union)bounding box regression loss function,it not only improving the measurement of bounding box regression loss but also increases the normalized distance loss between the prediction boxes and the target boxes,which makes the network more accurate in detecting small objects and faster in convergence.Finally,we explore the training strategy of the network model,which improves network performance without increasing the inference cost.Experiments show that the mAP of the proposed method reaches 96.5%,and the detection speed can reach 27 fps.Compared with other existing methods,it has better performance in detection accuracy and speed.
基金Project"863":Physical Model-based Dynamic Evolution Technology of a Complex Scene(2015AA016404)the SDUST Excellent Teaching Team Construction Plan.
文摘Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.
文摘In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.