期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Vibration and sound radiation of a rotating train wheel subject to a vertical harmonic wheel–rail force 被引量:7
1
作者 Tingsheng Zhong Gong Chen +3 位作者 Xiaozhen Sheng Xueyan Zhan Liqun Zhou Jian Kai 《Journal of Modern Transportation》 2018年第2期81-95,共15页
The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force... The rapid development of high-speed railway networks requires advanced methods for analysing vibration and sound radiation characteristics of a fast rotating train wheel subject to a vertical harmonic wheel-rail force. In order to consider the rotation of the wheel and at the same time increase the computational efficiency, a procedure is adapted in this paper taking advantage of the axial symmetry of the wheel. In this procedure, a recently developed 2.5D finite element method, which can consider wheel rotation but only requires a 2D mesh over a cross section containing the wheel axis, is used to calculate the vibration response of the wheel. Then, the vibration response of the wheel is taken as acoustic boundary condition and the 2.5D acoustic boundary element method, which only requires a 1D mesh over the boundary of the above cross section, is utilised to calculate the sound radiation of the wheel. These 2.5D methods and relevant programs are validated by comparing results from this procedure with those from conventional 3D analyses using commercial software. The comparison also demonstrates that these 2.5D methods have a much higher computational efficiency. Using the 2.5D methods, we study the wheel rotation speed influences on the factors including the vertical receptance of the wheel at wheel-rail contact point, sound pressure level at a pre-defined standard measurement point, radiated sound power level, directivity of the radia- tion, and contribution of each part of the wheel. It can be concluded that the wheel rotation speed splits most peaks of the vertical receptance at the wheel-rail contact point, sound pressure levels at the field, and the sound power level of the wheel into two peaks. The directivity and power contribution of the wheel are also significantly changed by the wheel rotation speed. Therefore, the rotation of a train wheel should be taken into account when calculating its vibration and sound radiation. 展开更多
关键词 train wheel Vibration response Soundradiation 2.5D FEM. 2.5D BEM Rotation effect
下载PDF
Research on the mechanics of high speed rails
2
作者 Yujie Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期189-190,共2页
In the preceding theme issue on"Current research progress on mechanics of high speed rails"(Acta Mechanica Sinica,30:846–909(2014)),we invited several authors in the fiel to present their research on high spee... In the preceding theme issue on"Current research progress on mechanics of high speed rails"(Acta Mechanica Sinica,30:846–909(2014)),we invited several authors in the fiel to present their research on high speed rails(HSR),including work on dynamic derailment analysis(Ling et al.[1]), 展开更多
关键词 durability wheel bearings braking train piezoelectric operational captured Qingdao hasbeen
下载PDF
Frictional Heat-Induced Phase Transformation on Train Wheel Surface 被引量:1
3
作者 SU Hang PAN Tao +3 位作者 LI Li YANG Cai-fu CUI Yin-hui JI Huai-zhong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第5期49-55,共7页
By combining thermomechanical coupling finite element analysis with the characteristics of phase transformation [continuous cooling transformation (CCT) curve], the thermal fatigue behavior of train wheel steel unde... By combining thermomechanical coupling finite element analysis with the characteristics of phase transformation [continuous cooling transformation (CCT) curve], the thermal fatigue behavior of train wheel steel under high speed and heavy load conditions was analyzed. The influence of different materials on the formation of the phase transformation zone of the wheel tread was discussed. The result showed that the peak temperature of wheel/track friction zone could be higher than the austenitizing temperature for braking. The depth of the austenitized region could reach a point of 0.9 mm beneath the wheel tread surface. The supercooled austenite is transformed to a hard and brittle martensite layer during the following rapid cooling process, which may lead to cracking and then spalling on the wheel tread surface. The decrease in carbon contents of the train wheel steel helps inhibit the formation of martensite by increasing the austenitizing temperature of the train wheel steel. When the carbon contents decrease from 0.7% to 0.4%, the Ac3 of the wheel steel is increased by 45 ℃, and the thickness of the martensite layer is de creased by 30 %, which is helpful in reducing the thermal cycling fatigue of the train wheel tread such as spalling. 展开更多
关键词 train wheel steel thermal cycling fatigue FRICTION martensite transformation thermomechanical coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部