Correction of genetic errors, commonly known as gene editing, holds promise to treat diseases with unmet medical needs. However, gene therapy trials do encounter unwanted outcomes, because of an incomplete understandi...Correction of genetic errors, commonly known as gene editing, holds promise to treat diseases with unmet medical needs. However, gene therapy trials do encounter unwanted outcomes, because of an incomplete understanding of the disease states, and gene therapy processes, among others. This situation encourages a concept that healthcare professionals receiving laboratory research training will not only identify inadequacies in basic biomedical knowledge of gene therapies but also provide tangible refinements. To this end, we have undertaken the PharmD student training in gene editing in a basic research laboratory setting. As a model, MYC gene was chosen for knockout using CRISPR-Cas9 method in HT29 and OVCAR8 cells. Students were involved in the design of MYC-specific gRNAs, subcloning into Cas9-carrying plasmid, and selection of knockout clones from the transfected cells. Subsequently, genomic DNA isolation and sequencing, analysis of clonal DNA sequences using online bioinformatics tools, western blotting, cell proliferation and cell division cycle experiments, were performed to characterize the MYC knockout clones. Results presented in this communication suggest that healthcare professionals who received laboratory training gain a better understanding of the disease states and mechanisms, gene therapy protocols, limitations of gene therapies, ability to critically evaluate the literature and confidence in the oversight of gene therapies in the clinic.展开更多
文摘Correction of genetic errors, commonly known as gene editing, holds promise to treat diseases with unmet medical needs. However, gene therapy trials do encounter unwanted outcomes, because of an incomplete understanding of the disease states, and gene therapy processes, among others. This situation encourages a concept that healthcare professionals receiving laboratory research training will not only identify inadequacies in basic biomedical knowledge of gene therapies but also provide tangible refinements. To this end, we have undertaken the PharmD student training in gene editing in a basic research laboratory setting. As a model, MYC gene was chosen for knockout using CRISPR-Cas9 method in HT29 and OVCAR8 cells. Students were involved in the design of MYC-specific gRNAs, subcloning into Cas9-carrying plasmid, and selection of knockout clones from the transfected cells. Subsequently, genomic DNA isolation and sequencing, analysis of clonal DNA sequences using online bioinformatics tools, western blotting, cell proliferation and cell division cycle experiments, were performed to characterize the MYC knockout clones. Results presented in this communication suggest that healthcare professionals who received laboratory training gain a better understanding of the disease states and mechanisms, gene therapy protocols, limitations of gene therapies, ability to critically evaluate the literature and confidence in the oversight of gene therapies in the clinic.