The important features of the rescattering trajectories in strong field ionization process such as the cutoff of the return energy at 3.17Up and that of the final energy at 10Up are obtained, based on the adiabatic ap...The important features of the rescattering trajectories in strong field ionization process such as the cutoff of the return energy at 3.17Up and that of the final energy at 10Up are obtained, based on the adiabatic approximation in which the initial momentum of the electron is assumed to be zero. We theoretically study the nonadiabatic effect by assuming a nonzero initial momentum on the rescattering trajectories based on the semiclassical simpleman model. We show that the nonzero initial momentum will modify both the maximal return energy at collision and the final energy after backward scattering, but in different ways for odd and even number of return trajectories. The energies are increased for even number of returns but are decreased for odd number of returns when the nonzero (positive or negative) initial momentum is applied.展开更多
The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with t...The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with the increase of the amplitude of the electrostatic field. By using the information about the position, velocity and force of the Bohmian trajectories, the dynamical process of tunneling through the barrier is investigated.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11425414 and 11504215the Scientific Research Training Program of Shanxi University
文摘The important features of the rescattering trajectories in strong field ionization process such as the cutoff of the return energy at 3.17Up and that of the final energy at 10Up are obtained, based on the adiabatic approximation in which the initial momentum of the electron is assumed to be zero. We theoretically study the nonadiabatic effect by assuming a nonzero initial momentum on the rescattering trajectories based on the semiclassical simpleman model. We show that the nonzero initial momentum will modify both the maximal return energy at collision and the final energy after backward scattering, but in different ways for odd and even number of return trajectories. The energies are increased for even number of returns but are decreased for odd number of returns when the nonzero (positive or negative) initial momentum is applied.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922200the National Natural Science Foundation of China under Grant Nos 11274141,11304116,11274001 and 11247024the Jilin Provincial Research Foundation for Basic Research under Grant No 20140101168JC
文摘The duration of a bound electron tunneling through the barrier formed by atomic potential and electrostatic field is calculated by the Bohmian trajectories scheme. The time of the tunneling ionization decreases with the increase of the amplitude of the electrostatic field. By using the information about the position, velocity and force of the Bohmian trajectories, the dynamical process of tunneling through the barrier is investigated.