Chronic hepatitis C(CHC) is the most common indication for liver transplantation(LT). Aggressive treatment of hepatitis C virus(HCV) infection before cirrhosis development or decompensation may reduce LT need and risk...Chronic hepatitis C(CHC) is the most common indication for liver transplantation(LT). Aggressive treatment of hepatitis C virus(HCV) infection before cirrhosis development or decompensation may reduce LT need and risk of HCV recurrence post-LT. Factors associated with increased HCV risk or severity of recurrence include older age, immunosuppression, HCV genotype 1 and high viral load at LT. HCV recurrence post-LT leads to accelerated liver disease and cirrhosis development with reduced graft and patient survival. Currently, interferon(IFN)-based regimens can be used in dualagent regimens with ribavirin, in triple-agent antiviral strategies with direct-acting antivirals(e.g., protease inhibitors telaprevir or boceprevir), or before transplant in compensated patients to reduce HCV viral load to prevent or reduce the risk of post-LT recurrence and complications; they cannot be used in patients with decompensated cirrhosis. IFN-based regimens are used in less than half of HCV-infected patients waiting for LT due to extremely low efficacy and poor tolerability. However, antiviral therapy is indicated after LT in patients with histologically confirmed CHC despite tolerability issues. Improvements in side effect management have increased survival in patients achieving therapeutic targets. HCV treatment pre- and post-LT results in significant health care costs especially when lack of efficacy leads to disease worsening, although studies have shown sofosbuvir treatment before LT vs conventional post-LT dual antiviral is cost effective. The suboptimal efficacy and tolerability of IFN-based therapies, plus the significant economic burden, means the need for effective and well tolerated IFN-free antiHCV therapy for pre- and post-LT remains high.展开更多
Hepatitis C virus (HCV) is a major health problem that leads to chronic hepatitis, cirrhosis and hepatocellular carcinoma, being the most frequent indication for liver transplantation in several countries. Unfortunate...Hepatitis C virus (HCV) is a major health problem that leads to chronic hepatitis, cirrhosis and hepatocellular carcinoma, being the most frequent indication for liver transplantation in several countries. Unfortunately, HCV re-infects the liver graft almost invariably following reperfusion, with an accelerated history of recurrence, leading to 10%-30% of patients progressing to cirrhosis within 5 years of transplantation. In this sense, some groups have even advocated for not retransplanting this patients, as lower patient and graftoutcomes have been reported. However, the management of HCV recurrence is being optimized and several strategies to reduce post-transplant recurrence could improve outcomes, decrease the rate of re-transplantation and optimize the use of available grafts. Three moments may be the focus of potential actions in order to decrease the impact of viral recurrence: the pretransplant moment, the transplant environment and the post-transplant management. In the pre-transplant setting, it is not well established if reducing the pre transplant viral load affects the risk for HCV progression after transplant. Obviously, antiviral treatment can render the patient HCV RNA negative post transplant but the long-term benefit has not yet been fully established to justify the cost and clinical risk. In the transplant moment, factors as donor age, cold ischemia time, graft steatosis and ischemia/reperfusion injury may lead to a higher and more aggressive viral recurrence. After the transplant, discussion about immunosuppression and the moment to start the treatment (prophylactic, pre-emptive or once-confirmed) together with new antiviral drugs are of interest. This review aims to help clinicians have a global overview of posttransplant HCV recurrence and strategies to reduce its impact on our patients.展开更多
A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-...A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-μm-diameter pores. In a rat model of incomplete spinal cord injury, a large number of neural stem cells were seeded into the loose layer, which was then adhered to the injured side, and the compact layer was placed against the lateral side. The results showed that the transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes promoted the differentiation of neural stem cells, attenuated the pathological lesion, and signiifcantly improved the motor function of the rats with incomplete spinal cord injuries. These experimental ifndings suggest that the transplantation of neural stem cells in a double-lay-er collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord.展开更多
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibit...Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astro- cytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, dou- ble-immunofluorescent histochemistry revealed that combined transplantation inhibited the early in- flammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was se- creted by transplanted cells, protected injured axons. The combined transplantation promoted ax- onal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte prolif- eration and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.展开更多
基金provided by Mary Hines and Sheridan Henness of Springer Healthcare Communications,and funded by Gilead Sciences Srl
文摘Chronic hepatitis C(CHC) is the most common indication for liver transplantation(LT). Aggressive treatment of hepatitis C virus(HCV) infection before cirrhosis development or decompensation may reduce LT need and risk of HCV recurrence post-LT. Factors associated with increased HCV risk or severity of recurrence include older age, immunosuppression, HCV genotype 1 and high viral load at LT. HCV recurrence post-LT leads to accelerated liver disease and cirrhosis development with reduced graft and patient survival. Currently, interferon(IFN)-based regimens can be used in dualagent regimens with ribavirin, in triple-agent antiviral strategies with direct-acting antivirals(e.g., protease inhibitors telaprevir or boceprevir), or before transplant in compensated patients to reduce HCV viral load to prevent or reduce the risk of post-LT recurrence and complications; they cannot be used in patients with decompensated cirrhosis. IFN-based regimens are used in less than half of HCV-infected patients waiting for LT due to extremely low efficacy and poor tolerability. However, antiviral therapy is indicated after LT in patients with histologically confirmed CHC despite tolerability issues. Improvements in side effect management have increased survival in patients achieving therapeutic targets. HCV treatment pre- and post-LT results in significant health care costs especially when lack of efficacy leads to disease worsening, although studies have shown sofosbuvir treatment before LT vs conventional post-LT dual antiviral is cost effective. The suboptimal efficacy and tolerability of IFN-based therapies, plus the significant economic burden, means the need for effective and well tolerated IFN-free antiHCV therapy for pre- and post-LT remains high.
基金Supported by The contribution of Ruben Ciria has been possible thanks to the support of a scholarship from the Sociedad Espa ola de Trasplante Hepático (SETH-2009)
文摘Hepatitis C virus (HCV) is a major health problem that leads to chronic hepatitis, cirrhosis and hepatocellular carcinoma, being the most frequent indication for liver transplantation in several countries. Unfortunately, HCV re-infects the liver graft almost invariably following reperfusion, with an accelerated history of recurrence, leading to 10%-30% of patients progressing to cirrhosis within 5 years of transplantation. In this sense, some groups have even advocated for not retransplanting this patients, as lower patient and graftoutcomes have been reported. However, the management of HCV recurrence is being optimized and several strategies to reduce post-transplant recurrence could improve outcomes, decrease the rate of re-transplantation and optimize the use of available grafts. Three moments may be the focus of potential actions in order to decrease the impact of viral recurrence: the pretransplant moment, the transplant environment and the post-transplant management. In the pre-transplant setting, it is not well established if reducing the pre transplant viral load affects the risk for HCV progression after transplant. Obviously, antiviral treatment can render the patient HCV RNA negative post transplant but the long-term benefit has not yet been fully established to justify the cost and clinical risk. In the transplant moment, factors as donor age, cold ischemia time, graft steatosis and ischemia/reperfusion injury may lead to a higher and more aggressive viral recurrence. After the transplant, discussion about immunosuppression and the moment to start the treatment (prophylactic, pre-emptive or once-confirmed) together with new antiviral drugs are of interest. This review aims to help clinicians have a global overview of posttransplant HCV recurrence and strategies to reduce its impact on our patients.
文摘A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-μm-diameter pores. In a rat model of incomplete spinal cord injury, a large number of neural stem cells were seeded into the loose layer, which was then adhered to the injured side, and the compact layer was placed against the lateral side. The results showed that the transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes promoted the differentiation of neural stem cells, attenuated the pathological lesion, and signiifcantly improved the motor function of the rats with incomplete spinal cord injuries. These experimental ifndings suggest that the transplantation of neural stem cells in a double-lay-er collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord.
基金supported by funding from the Ministry of Finance People’s Republic of ChinaChina Rehabilitation Research Center Research Program grants, No. 2008-2,2008-3, 2008-4, 2008-5
文摘Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astro- cytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, dou- ble-immunofluorescent histochemistry revealed that combined transplantation inhibited the early in- flammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was se- creted by transplanted cells, protected injured axons. The combined transplantation promoted ax- onal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte prolif- eration and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.