Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hard...Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hardly condensed by conventional cooling water.In this article,theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of200℃.The results indicated that the problem that CO_2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO_2.Variation trend of outlet temperature of thermal oil in supercritical heater with heating pressure is determined by the composition of the mixture fluid.Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290.There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.展开更多
In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based...In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to predict the optimal discharge pressure of a basic CO2 trans-critical cycle. After further studies on CO2 trans-critical cycles with a regenerator or expander, two more formulas were also developed. These formulas could provide an access to improve the COP of CO2 trans-critical cycle.展开更多
基金Project 51306198 supported by the National Natural Science Foundation of China
文摘Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hardly condensed by conventional cooling water.In this article,theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of200℃.The results indicated that the problem that CO_2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO_2.Variation trend of outlet temperature of thermal oil in supercritical heater with heating pressure is determined by the composition of the mixture fluid.Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290.There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.
基金This work was supported by Beijing Foundation for Academic Human Resources Development in Institution and the Beijing Foundation for Natural Science
文摘In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to predict the optimal discharge pressure of a basic CO2 trans-critical cycle. After further studies on CO2 trans-critical cycles with a regenerator or expander, two more formulas were also developed. These formulas could provide an access to improve the COP of CO2 trans-critical cycle.