It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
This paper focuses on the linear transceiver design for multiple input multiple output(MIMO) interference channel(IC), in which a bounded channel error model is assumed. Two optimization problems are formulated as...This paper focuses on the linear transceiver design for multiple input multiple output(MIMO) interference channel(IC), in which a bounded channel error model is assumed. Two optimization problems are formulated as minimizing maximum per-user mean square error(MSE) and sum MSE with the per-transmitter power constraint. Since these optimization problems are not jointly convex on their variable matrices, the transmitter and receiver can be optimized alternately respectively. For each matrix, an approximated approach is presented where the upper bound of constraint is derived so that it has less semidefinite, thus the problem can be viewed as second-order-cone programming(SOCP) and gets less computational complexity. Compared with the conventional S-procedure method, the proposed approach achieves similar performance, but reduces the complexity significantly, especially for the system with large scale number of antennas.展开更多
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
基金supported by the National Natural Science Foundation of China (61401270, 61271283)
文摘This paper focuses on the linear transceiver design for multiple input multiple output(MIMO) interference channel(IC), in which a bounded channel error model is assumed. Two optimization problems are formulated as minimizing maximum per-user mean square error(MSE) and sum MSE with the per-transmitter power constraint. Since these optimization problems are not jointly convex on their variable matrices, the transmitter and receiver can be optimized alternately respectively. For each matrix, an approximated approach is presented where the upper bound of constraint is derived so that it has less semidefinite, thus the problem can be viewed as second-order-cone programming(SOCP) and gets less computational complexity. Compared with the conventional S-procedure method, the proposed approach achieves similar performance, but reduces the complexity significantly, especially for the system with large scale number of antennas.