期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Identifying changes in punitive transcriptional factor binding sites from regulatory single nucleotide polymorphisms that are significantly associated with disease or sickness 被引量:1
1
作者 Norman E Buroker 《World Journal of Hematology》 2016年第4期75-87,共13页
AIM To identify punitive transcriptional factor binding sites(TFBS) from regulatory single nucleotide polymorphisms(rS NPs) that are significantly associated with disease.METHODS The genome-wide association studies ha... AIM To identify punitive transcriptional factor binding sites(TFBS) from regulatory single nucleotide polymorphisms(rS NPs) that are significantly associated with disease.METHODS The genome-wide association studies have provided us with nearly 6500 disease or trait-predisposing SNPs where 93% are located within non-coding regions such as gene regulatory or intergenic areas of the genome. In the regulatory region of a gene, a SNP can change the DNA sequence of a transcriptional factor(TF) motif and in turn may affect the process of gene regulation. SNP changes that affect gene expression and impact gene regulatory sequences such as promoters, enhancers, and silencers are known as rS NPs. Computational tools can be used to identify unique punitive TFBS created by rS NPs that are associated with disease or sickness. Computational analysis was used to identify punitive TFBS generated by the alleles of these rS NPs.RESULTS r SNPs within nine genes that have been significantly associated with disease or sickness were used to illustrate the tremendous diversity of punitive unique TFBS that can be generated by their alleles. The genes studied are the adrenergic, beta, receptor kinase 1, the v-akt murine thymoma viral oncogene homolog 3, the activating transcription factor 3, the type 2 demodkinase gene, the endothetal Per-Arnt-Sim domain protein 1, the lysosomal acid lipase A, the signal Transducer and Activator of Transcription 4, the thromboxane A2 receptor and the vascular endothelial growth factor A. From this sampling of SNPs among the nine genes, there are 73 potential unique TFBS generated by the common alleles comparedto 124 generated by the minor alleles indicating the tremendous diversity of potential TFs that are capable of regulating these genes.CONCLUSION From the diversity of unique punitive binding sites for TFs, it was found that some TFs play a role in the disease or sickness being studied. 展开更多
关键词 REGULATORY single nucleotide polymorphisms Alleles transcriptionAL factors transcriptionAL factor binding sites Linkage disequilibrium DISEASE or SICKNESS
下载PDF
Bioinformatic screening of the binding transcription sites in the regulatory regions of genes up-regulated in response to oxidative stress
2
作者 Shkurat TP Ponomareva NS +3 位作者 Aleksandrova AA Shkurat MA Butenko AI Panich AE 《Open Journal of Genetics》 2012年第4期1-4,共4页
This study focuses on bioinformatics search for new regulatory structures in the non-coding DNA, located around the patterns of gene expression levels changed significantly in response to oxidative stress. Hypothesize... This study focuses on bioinformatics search for new regulatory structures in the non-coding DNA, located around the patterns of gene expression levels changed significantly in response to oxidative stress. Hypothesized that all of the genes increase the expression in response to oxidative stress may have the same motifs in non-coding DNA. To search for motifs created an integrated collection database of transcription binding sites - JASPAR, TRANSFAC, Hocomoco TF Homo sapiens, Uniprobe TF Mus musculus. Two types of regulatory regions: the promoter region and the sequence with the capture of potential cis-regulatory modules. In the regulatory regions of genes increase the expression in response to oxidative stress, in contrast to the gene expression level did not change, families of transcription factors identified SOX (1-30) and HX (A, B, C, D). 展开更多
关键词 Gene Expression DNA Microarrays Noncoding DNA Oxidative Stress transcription factor sites of transcription factor binding DNA Motif
下载PDF
A distribution pattern assisted method of transcription factor binding site discovery for both yeast and filamentous fungi
3
作者 Jinnan Hu Chenxi Chen +1 位作者 Kun Huang Thomas K. Mitchell 《Advances in Bioscience and Biotechnology》 2013年第4期509-517,共9页
Transcription factors (TFs) are the core sentinels of gene regulation functioning by binding to highly specific DNA sequences to activate or repress the recruitment of RNA polymerase. The ability to identify transcrip... Transcription factors (TFs) are the core sentinels of gene regulation functioning by binding to highly specific DNA sequences to activate or repress the recruitment of RNA polymerase. The ability to identify transcription factor binding sites (TFBSs) is necessary to understand gene regulation and infer regulatory networks. Despite the fact that bioinformatics tools have been developed for years to improve computational identification of TFBSs, the accurate prediction still remains changeling as DNA motifs recognized by TFs are typically short and often lack obvious patterns. In this study we introduced a new attribute-motif distribution pattern (MDP) to assist in TFBS prediction. MDP was developed using a TF distribution pattern curve generated by analyzing 25 yeast TFs and 37 of their experimentally validated binding motifs, followed by calculating a scoring value to quantify the reliability of each motif prediction. Finally, MDP was tested using another set of 7 TFs with known binding sites to in silico validate the approach. The method was further tested in a non-yeast system using the filamentous fungus Magnaporthe oryzae transcription factor MoCRZ1. We demonstrate superior prediction reranking results using MDP over the commonly used program MEME and the other four predictors. The data showed significant improvements in the ranking of validated TFBS and provides a more sensitive statistics based approach for motif discovery. 展开更多
关键词 transcription factor binding site DISCOVER Distribution Pattern SACCHAROMYCES CEREVISIAE MAGNAPORTHE ORYZAE MoCRZ1
下载PDF
Myocardin-Related Transcription Factor A Mediates OxLDL-Induced Endothelial Injury 被引量:12
4
作者 Fang, Fei Yang, Yuyu +4 位作者 Yuan, Zhibin Gao, Yuqi Zhou, Jiliang Chen, Qi Xu, Yong 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期842-842,共1页
关键词 动脉粥样硬化 内皮损伤 低密度脂蛋白 细胞反应
下载PDF
Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome 被引量:1
5
作者 Si-Jin Cheng Shuai Jiang +2 位作者 Fang-Yuan Shi Yang Ding Ge Gao 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第7期373-379,共7页
Understanding the functional effects of genetic variants is crucial in modern genomics and genetics. Transcription factor binding sites (TFBSs) are one of the most important cis-regulatory elements. While multiple t... Understanding the functional effects of genetic variants is crucial in modern genomics and genetics. Transcription factor binding sites (TFBSs) are one of the most important cis-regulatory elements. While multiple tools have been developed to assess functional effects of genetic variants at TFBSs, they usually assume that each variant works in isolation and neglect the potential "interference" among multiple variants within the same TFBS. In this study, we presented COPE-TFBS (Context-Oriented Predictor for variant Effect on Transcription Factor Binding Site), a novel method that considers sequence context to accurately predict variant effects on TFBSs. We systematically re-analyzed the sequencing data from both the 1000 Genomes Project and the Genotype-Tissue Expression (GTEx) Project via COPE-TFBS, and identified numbers of novel TFBSs, transformed TFBSs and discordantly annotated TFBSs resulting from multiple variants, further highlighting the necessity of sequence context in accurately annotating genetic variants. 展开更多
关键词 Compound effect transcription factor binding site Variant annotation BIOINFORMATICS Genetic variants
原文传递
Structure-Based Prediction of Transcription Factor Binding Sites 被引量:1
6
作者 Jun-tao Guo Shane Lofgren Alvin Farrel 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第6期568-577,共10页
Transcription Factors(TFs) are a very diverse family of DNA-binding proteins that play essential roles in the regulation of gene expression through binding to specific DNA sequences. They are considered as one of th... Transcription Factors(TFs) are a very diverse family of DNA-binding proteins that play essential roles in the regulation of gene expression through binding to specific DNA sequences. They are considered as one of the prime drug targets since mutations and aberrant TF-DNA interactions are implicated in many diseases.Identification of TF-binding sites on a genomic scale represents a critical step in delineating transcription regulatory networks and remains a major goal in genomic annotations. Recent development of experimental high-throughput technologies has provided valuable information about TF-binding sites at genome scale under various physiological and developmental conditions. Computational approaches can provide a cost-effective alternative and complement the experimental methods by using the vast quantities of available sequence or structural information. In this review we focus on structure-based prediction of transcription factor binding sites. In addition to its potential in genomescale predictions, structure-based approaches can help us better understand the TF-DNA interaction mechanisms and the evolution of transcription factors and their target binding sites. The success of structure-based methods also bears a translational impact on targeted drug design in medicine and biotechnology. 展开更多
关键词 transcription factor binding site structure-based predictions knowledge-based potential physics-based potential
原文传递
TrFAST: A Tool to Predict Signaling Pathway-specific Transcription Factor Binding Sites
7
作者 Umair Seemab Qurrat ul Ain +2 位作者 Muhammad Sulaman Nawaz Zafar Saeed Sajid Rashid 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2012年第6期354-359,共6页
Recent advances in the development of high-throughput tools have significantly revolutionized our understanding of molecular mech- anisms underlying normal and dysfunctional biological processes. Here we present a nov... Recent advances in the development of high-throughput tools have significantly revolutionized our understanding of molecular mech- anisms underlying normal and dysfunctional biological processes. Here we present a novel computational tool, transcription factor search and analysis tool (TrFAST), which was developed for the in silico analysis of transcription factor binding sites (TFBSs) of sig- naling pathway-specific TFs. TrFAST facilitates searching as well as comparative analysis of regulatory motifs through an exact pattern matching algorithm followed by the graphical representation of matched binding sites in multiple sequences up to 50 kb in length. TrFAST is proficient in reducing the number of comparisons by the exact pattern matching strategy. In contrast to the pre-existing tools that find TFBS in a single sequence, TrFAST seeks out the desired pattern in multiple sequences simultaneously. It counts the GC con- tent within the given multiple sequence data set and assembles the combinational details of consensus sequence(s) located at these regions, thereby generating a visual display based on the abundance of unique pattern. Comparative regulatory region analysis of multi- ple orthologous sequences simultaneously enhances the features of TrFAST and provides a significant insight into study of conservation of non-coding cis-regulatory elements. TrFAST is freely available at http://www.fi-pk.com/trfast.html. 展开更多
关键词 TrFAST transcription factor binding sites in silico analysis Signaling pathway Pattern searching
原文传递
Nucleosomal Context of Binding Sites Influences Transcription Factor Binding Affinity and Gene Regulation
8
作者 Zhiming Dai Xianhua Dai Qian Xiang Jihua Feng 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2009年第4期155-162,共8页
Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory funct... Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory function of the TF. However, how nucleosomal context of TFBSs influences TF binding and subsequent gene regulation remains to be elucidated. Using genome-wide nucleosome positioning and TF binding data in budding yeast, we found that binding affinities of TFs to DNA tend to decrease with increasing nucleosome occupancy of the associated binding sites. We further demonstrated that nucleosomal context of binding sites is correlated with gene regulation of the corresponding TF. Nucleosome-depleted TFBSs are linked to high gene activity and low expression noise, whereas nucleosome-covered TFBSs are associated with low gene activity and high expression noise. Moreover, nucleosome-covered TFBSs tend to disrupt coexpression of the corresponding TF target genes. We conclude that nucleosomal context of binding sites influences TF binding affinity, subsequently affecting the regulation of TFs on their target genes. This emphasizes the need to include nucleosomal context of TFBSs in modeling gene regulation. 展开更多
关键词 gene regulation NUCLEOSOME transcription factor binding site
原文传递
基于吉布斯采样的TFBS识别算法研究
9
作者 何彩升 戴宪华 +3 位作者 向倩 王江 邓泱泱 戴智明 《计算机科学》 CSCD 北大核心 2007年第2期178-180,共3页
计算机方法识别转录因子结合位点(TFBS,也称“模式”)是目前生物信息学的一个很有吸引性和挑战性的课题。吉布斯采样识别模式的算法本质上是一个启发式搜索方法,容易陷入非全局最优的局部最大值。为此,提出了一种改进的吉布斯采样策略YG... 计算机方法识别转录因子结合位点(TFBS,也称“模式”)是目前生物信息学的一个很有吸引性和挑战性的课题。吉布斯采样识别模式的算法本质上是一个启发式搜索方法,容易陷入非全局最优的局部最大值。为此,提出了一种改进的吉布斯采样策略YGMS(Yeast Gibbs Motif Sampler)来识别酿酒酵母共表达基因调控区域转录因子结合位点。在酵母的共调控基因序列的数据集测试中,YGMS比其他几个基于吉布斯采样算法更有效地识别出真实模式序列,在一定程度上提高了算法的性能。 展开更多
关键词 生物信息学 吉布斯采样 转录因子结合位点
下载PDF
Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants 被引量:3
10
作者 Xuelei Lai Arnaud Stigliani +5 位作者 Gilles Vachon Cristel Carles Cezary Smaczniak Chloe Zubieta Kerstin Kaufmann Francois Parcy 《Molecular Plant》 SCIE CAS CSCD 2019年第6期743-763,共21页
Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where ... Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity. 展开更多
关键词 transcription factor binding site Gene regulation FLOWER development
原文传递
A cost-effective ts CUT&Tag method for profiling transcription factor binding landscape 被引量:1
11
作者 Leiming Wu Zi Luo +10 位作者 Yanni Shi Yizhe Jiang Ruonan Li Xinxin Miao Fang Yang Qing Li Han Zhao Jiquan Xue Shutu Xu Tifu Zhang Lin Li 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第11期2033-2038,共6页
Knowledge of the transcription factor binding landscape(TFBL)is necessary to analyze gene regulatory networks for important agronomic traits.However,a low-cost and high-throughput in vivo chromatin profiling method is... Knowledge of the transcription factor binding landscape(TFBL)is necessary to analyze gene regulatory networks for important agronomic traits.However,a low-cost and high-throughput in vivo chromatin profiling method is still lacking in plants.Here,we developed a transient and simplified cleavage under targets and tagmentation(tsCUT&Tag)that combines transient expression of transcription factor proteins in protoplasts with a simplified CUT&Tag without nucleus extraction.Our tsCUT&Tag method provided higher data quality and signal resolution with lower sequencing depth compared with traditional ChIP-seq.Furthermore,we developed a strategy combining tsCUT&Tag with machine learning,which has great potential for profiling the TFBL across plant development. 展开更多
关键词 binding sites CHIP-SEQ CUT&Tag machine learning transcription factor transient expression
原文传递
六个转录因子在人类全基因组中结合位点数的估计
12
作者 李子涵 郭庭赫 +2 位作者 柴露 高洁 张利绒 《内蒙古大学学报(自然科学版)》 CAS 2024年第5期502-508,共7页
转录因子是一种与DNA上特定序列相结合,进而对基因的转录和表达进行调控的蛋白质。利用理论方法对细胞或组织特异的转录因子结合位点进行预测时,负集的大小和选择往往会影响预测模型性能的评估。通过估计转录因子在人类基因组中结合位... 转录因子是一种与DNA上特定序列相结合,进而对基因的转录和表达进行调控的蛋白质。利用理论方法对细胞或组织特异的转录因子结合位点进行预测时,负集的大小和选择往往会影响预测模型性能的评估。通过估计转录因子在人类基因组中结合位点的数量,可以准确评估预测模型的性能。因此,本文利用不同细胞系中CTCF、POLR2A、EZH2、REST、MAX、RAD21六个转录因子的ChIP-Seq数据,对转录因子在人类基因组中的结合位点数进行拟合和估计,为构建转录因子预测模型负集的选择提供参考。 展开更多
关键词 转录因子 结合位点数 拟合
下载PDF
Mechanisms and biotechnological applications of transcription factors 被引量:2
13
作者 Hehe He Mingfei Yang +5 位作者 Siyu Li Gaoyang Zhang Zhongyang Ding Liang Zhang Guiyang Shi Youran Li 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第4期565-577,共13页
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks.These crucial bioactive functions rely on their ability to respond to effect... Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks.These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites.Recent advancements have brought innovative insights into the understanding of transcription factors.In this review,we comprehensively summarize the mechanisms by which transcription factors carry out their functions,along with calculation and experimental-based methods employed in their identification.Additionally,we highlight recent achievements in the application of transcription factors in various biotechnological fields,including cell engineering,human health,and biomanufacturing.Finally,the current limitations of research and provide prospects for future investigations are discussed.This review will provide enlightening theoretical guidance for transcription factors engineering. 展开更多
关键词 transcription factors binding sites Database-based prediction Experimental identification Cell engineering Biomanufacturing
原文传递
基于分裂注意力机制的DNA转录因子结合位点预测
14
作者 姜博文 冯子健 黄伟鸿 《软件导刊》 2024年第2期32-39,共8页
准确识别DNA序列中的转录因子结合位点对于基因表达解析和药物设计等具有重要意义。基于深度学习的各种预测方法已被应用于转录因子结合位点任务中,但预测性能尚有提升空间。为此,提出一种新的深度学习方法ResNest-TFBS,用于预测690个Ch... 准确识别DNA序列中的转录因子结合位点对于基因表达解析和药物设计等具有重要意义。基于深度学习的各种预测方法已被应用于转录因子结合位点任务中,但预测性能尚有提升空间。为此,提出一种新的深度学习方法ResNest-TFBS,用于预测690个ChIP-seq数据集上的转录因子结合位点。该方法首先在序列One-hot编码的基础上通过引入DNA的分子动力学特征与静电势能特征提取DNA的空间结构特性;其次利用分裂注意力机制与残差结构组成ResNest模型进行训练,从而将通道注意力机制应用于不同通道分支,以捕获其在全局数据集上学习到的特征间交互与多通道表示;最后将上述先验知识迁移至690个ChIP-seq数据集上,并进行广泛测试。实验结果表明,ResNest-TFBS性能优异,平均AUC为0.929。此外,通过SHAP工具验证不同特征在该任务中的贡献程度,证实所引入的特征为转录因子结合位点预测提供了更具价值的生物学线索。 展开更多
关键词 DNA 转录因子结合位点 深度学习 迁移学习 分裂注意力机制
下载PDF
斑马鱼MIB1启动子及互作基因的功能富集分析
15
作者 王凡 徐世明 +2 位作者 鄢雯 古同男 王宏娟 《国际检验医学杂志》 CAS 2023年第24期2963-2969,共7页
目的分析斑马鱼E3泛素蛋白连接酶1(MIB1)基因启动子区转录因子结合位点(TFBS),MIB1互作基因和互作蛋白的种类及其在信号通路中的作用,探讨MIB1基因的调控方式及潜在功能。方法利用国家基因组科学数据中心(NGDC)预测非编码RNA(ncRNA),利... 目的分析斑马鱼E3泛素蛋白连接酶1(MIB1)基因启动子区转录因子结合位点(TFBS),MIB1互作基因和互作蛋白的种类及其在信号通路中的作用,探讨MIB1基因的调控方式及潜在功能。方法利用国家基因组科学数据中心(NGDC)预测非编码RNA(ncRNA),利用Alggen与AnimalTFDB在线网站预测MIB1基因TFBS种类,使用GeneMANIA与STRING分析MIB1的互作基因与互作蛋白;通过DAVID网站获取相关数据,进行基因本体(GO)可视化分析及京都基因与基因组百科全书(KEGG)代谢通路分析。结果MIB1基因启动子区及5′非翻译区可转录出ncRNA;通过预测得到121种TFBS,并发现P53转录因子既可以结合到MIB1基因的启动子区又可与MIB1蛋白相互作用;在线预测出6种MIB1的共表达基因,筛选出20种互作基因;通过GO可视化分析发现,MIB1及其互作基因在生物过程方面具有调控细胞、组织、器官生长分化及调节NOTCH信号通路等功能,且主要在细胞质核周区、细胞膜和突触后密集区等部位被富集,具有结合NOTCH蛋白、PDZ结构域蛋白等分子功能;KEGG代谢通路分析发现,MIB1及其互作基因涉及4条代谢途径。结论MIB1包含多种TFBS,并通过与特定转录因子的相互作用,影响细胞癌变、免疫调节等多种生物学过程。MIB1还可能通过其互作基因和互作蛋白的介导,在细胞生长调控、造血干细胞分化、胚胎发育及神经元信息的传递等方面发挥重要作用。 展开更多
关键词 生物信息学 E3泛素蛋白连接酶1 启动子 转录因子结合位点 互作基因
下载PDF
转录因子结合位点生物信息学研究进展 被引量:28
16
作者 侯琳 钱敏平 +1 位作者 朱云平 邓明华 《遗传》 CAS CSCD 北大核心 2009年第4期365-373,共9页
转录因子结合位点(Transcription factor binding site,TFBS)是与转录因子结合的DNA序列,它们与转录因子相互作用调控基因的转录过程。确定TFBS是理解转录调控机制,建立转录调控网络的关键问题。随着高通量实验技术的发展,结合ChIP-chi... 转录因子结合位点(Transcription factor binding site,TFBS)是与转录因子结合的DNA序列,它们与转录因子相互作用调控基因的转录过程。确定TFBS是理解转录调控机制,建立转录调控网络的关键问题。随着高通量实验技术的发展,结合ChIP-chip实验以及多个基因组的序列信息来预测TFBS已成为新的研究热点。本文简要概述了用于TFBS定位的实验技术,TFBS信息相关的数据库,重点评述了描述TFBS的模型以及预测TFBS的多种软件。TFBS的生物信息学研究的发展,将与相关领域相互促进,有助于进一步揭示转录调控机制。 展开更多
关键词 转录因子结合位点 生物信息学 ChIP—chip 位置权重矩阵 系统发育足迹分析法
下载PDF
肝组织选择性细胞通讯类基因转录调控网络的构建 被引量:5
17
作者 廖之君 马文丽 +3 位作者 梁爽 孟伟 商涛 郑文岭 《南方医科大学学报》 CAS CSCD 北大核心 2008年第9期1582-1585,共4页
目的探讨肝脏组织选择性基因表达的转录调控机制。方法按照基因功能的差异对组织选择性Affymetrix探针集(共3919条探针)进行聚类,挑选肝组织选择性细胞通讯类(LSCC)基因进行研究。收集各基因上游的500个碱基序列,用3种软件分别预测这些... 目的探讨肝脏组织选择性基因表达的转录调控机制。方法按照基因功能的差异对组织选择性Affymetrix探针集(共3919条探针)进行聚类,挑选肝组织选择性细胞通讯类(LSCC)基因进行研究。收集各基因上游的500个碱基序列,用3种软件分别预测这些基因的转录因子(TFs)以及转录因子结合位点(TFBS),并进行文献挖掘,最后构建基因转录调控网络。结果获得含23个基因的肝组织选择性细胞通讯类探针集,两种软件预测分别得到50和72个TFs,两者交集有18个相同TFs,得分最高前10条TFBS序列基本上与预测的TFs相对应,文献挖掘结果提示LSCC基因和TFs除具有肝组织的选择性、转录因子的一般性词汇外,还与白蛋白、糖尿病、葡萄糖、脂类、代谢、JNK等显著相关。调控网络显示LSCC基因和TFs具有参与糖、脂代谢调节,结合、转运功能,凝血信号转导,炎症应答等功能,未进入网络的PPP2R1B基因与网络中DUSP10基因部分功能相似。结论LSCC基因和预测的TFs参与肝脏多种重要功能的调控,这些功能整合在复杂的转录调控网络中,转录因子JUN可能是发挥调控作用的重要靶点,推测PPP2R1B也可能参与JUN的调控。 展开更多
关键词 组织选择性 转录因子 转录因子结合位点 转录调控网络
下载PDF
利用序列保守模体和局部构象信息预测转录因子结合位点 被引量:4
18
作者 杜耀华 倪青山 王正志 《生命科学研究》 CAS CSCD 2006年第3期215-223,共9页
转录因子结合位点的计算预测是研究基因转录调控的重要环节,但常用的位置特异得分矩阵方法预测特异性偏低.通过深入分析结合位点的生物特征,提出了一种综合利用序列保守模体和局部构象信息的结合位点预测方法,以极大相关得分矩阵作为保... 转录因子结合位点的计算预测是研究基因转录调控的重要环节,但常用的位置特异得分矩阵方法预测特异性偏低.通过深入分析结合位点的生物特征,提出了一种综合利用序列保守模体和局部构象信息的结合位点预测方法,以极大相关得分矩阵作为保守模体的描述模型,并根据二苷参数模型计算位点序列的局部构象,将两类信息得分组合为多维特征向量,在二次判别分析的框架下进行训练和滑动预测.预测过程中还引入了位置信息量以优化似然得分和过滤备选结果.针对大肠杆菌CRP和Fis结合位点数据的留一法测试结果表明,描述模型的改进和多种信息的融合能有效地改善预测方法的性能,大幅度提高特异性. 展开更多
关键词 转录因子结合位点 计算预测 保守模体 极大相关得分矩阵 局部构象 二次判别分析
下载PDF
预测酵母(Yeast)基因转录因子结合位点 被引量:16
19
作者 杨科利 李前忠 林昊 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期524-530,共7页
基于在转录因子结合位点各碱基出现的概率不相同,以转录因子结合位点每一位置的碱基保守程度为参量,分别计算每种转录因子结合位点在每一位置的碱基保守指数Mi.通过构建每种转录因子结合位点位置权重矩阵(PWM),利用位置权重矩阵打分函... 基于在转录因子结合位点各碱基出现的概率不相同,以转录因子结合位点每一位置的碱基保守程度为参量,分别计算每种转录因子结合位点在每一位置的碱基保守指数Mi.通过构建每种转录因子结合位点位置权重矩阵(PWM),利用位置权重矩阵打分函数对酵母四种转录因子结合位点进行预测.利用se lf-cons istency和cross-va lidation两种方法对此算法进行检验,均获得了较高的预测成功率.结果显示四种转录因子结合位点的预测成功率均超过80%,且同时获得多个试验未测定的转录因子结合位点,对实验有指导意义. 展开更多
关键词 转录因子结合位点 位置权重矩阵 碱基保守性指数
下载PDF
p27^(Kip1)基因启动子区的生物信息学分析 被引量:15
20
作者 管晓翔 陈巍魏 +1 位作者 陈龙邦 王靖华 《医学研究生学报》 CAS 2010年第10期1029-1032,共4页
目的生物信息学的发展为通过在线软件预测基因启动子的相关信息提供了众多有重要价值的参考信息。文中利用生物信息学在线软件预测p27Kip1基因启动子功能。方法获取细胞周期调控因子人p27Kip1启动子全长序列,利用多种在线相关软件预测... 目的生物信息学的发展为通过在线软件预测基因启动子的相关信息提供了众多有重要价值的参考信息。文中利用生物信息学在线软件预测p27Kip1基因启动子功能。方法获取细胞周期调控因子人p27Kip1启动子全长序列,利用多种在线相关软件预测出甲基化部位和转录因子结合部位。结果该基因启动子序列全长为3568 bp,核苷酸数据库(Gen-Bank)登录号为E26053。p27Kip1启动子序列中CpG岛存在于2544~2845 bp、2876~3511 bp处,CpG岛的存在会抑制p27Kip1启动子的转录。p27Kip1启动子共有16个转录因子。结论基因启动子相关生物信息学的研究,提高了针对启动子的研究效率,并为预测基因启动子的功能研究提供了重要信息。 展开更多
关键词 p27Kip1启动子区 DNA甲基化 转录因子结合部位 生物信息学分析
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部